Skip to main content
Log in

Copper Affects the Cotyledonary Carbohydrate Status During the Germination of Bean Seed

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Seeds of bean (Phaseolus vulgaris L.) were germinated by soaking in distilled water or copper chloride solution. The relationships among copper excess treatment, germination rate, dry weight, sugar contents, and carbohydrase activities in cotyledon were investigated. Heavy metal stress provoked a diminution in germination rate and biomass mobilization, as compared with the control. A drastic disorder in soluble sugars export, especially glucose and fructose liberation, was also imposed after exposure to excess copper. This restricted the starch and sucrose breakdown in reserve tissue, as evidenced by the inhibition in the activities of α-amylase and invertase isoenzymes (soluble acid, soluble neutral, cell wall-bound acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopaedia of plant physiology, 12C. Springer, Berlin, pp 245–300

    Google Scholar 

  2. Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In: Gerrit S, Bernd M (eds) III. Bioaccumulation and biological effects of chemicals. Wiley and Spektrum Akademischer Verlag, Heidelberg, pp 587–620

    Google Scholar 

  3. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  4. Fernande JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  5. Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci 127:129–137

    Article  CAS  Google Scholar 

  6. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedling. C R Biol 328:23–31

    Article  CAS  PubMed  Google Scholar 

  7. Xiong ZT, Liu C, Geng B (2006) Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol Environ Saf 64:273–280

    Article  CAS  PubMed  Google Scholar 

  8. Posmyk MM, Kontek R, Janas KM (2009) Antioxidants enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    Article  CAS  PubMed  Google Scholar 

  9. Bewley DJ (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  Google Scholar 

  10. Murray DR, Peoples MB, Waters SP (1979) Proteolysis in the axis of the germinating pea seed. I. Changes in protein degrading enzyme activities of the radicle and primary root. Planta 147:111–116

    Article  CAS  Google Scholar 

  11. Smiri M, Chaoui A, El Ferjani E (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166:259–269

    Article  CAS  PubMed  Google Scholar 

  12. McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Application to pea. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  13. Dishe Z, Borenfreund E (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 192:583–587

    Google Scholar 

  14. Carter JL, Garrard LA, West SH (1973) Effect of gibberellic acid on starch degrading enzymes in leaves of Digitaria decumbens. Phytochemistry 12:251–254

    Article  CAS  Google Scholar 

  15. Dure LS (1960) Site of origin and extent of activity of amylases in maize germination. Plant Physiol 35:925–934

    Article  CAS  PubMed  Google Scholar 

  16. Saher S, Fernadez-Garcia N, Piqueras A, Hellin E, Olmos E (2005) Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress? Plant Physiol Biochem 43:573–582

    Article  CAS  PubMed  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Carlson CL, Adriano DC, Sajwan KS, Abels SL, Thoma DP, Driver JT (1991) Effects of selected trace metals on germinating seeds of six plant species. Water Air Soil Pollut 59:231–240

    Article  CAS  Google Scholar 

  19. Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Bansal P, Sharma P, Dhinsda K (2001) Impact of Pb2+ and Cd2+ on activities of hydrolytic enzymes in germinating pea seeds. Ann Agri-Bio Res 6:113–122

    Google Scholar 

  21. Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

  22. Bansal P, Sharma P, Goyal V (2002) Impact of lead and cadmium on enzyme of citric acid cycle in germinating pea seeds. Biol Plant 45:125–127

    Article  CAS  Google Scholar 

  23. Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). C R Biol 328:33–41

    Article  CAS  PubMed  Google Scholar 

  24. Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiol Plant 30:451–456

    Article  Google Scholar 

  25. Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosyn Res 36:75–80

    Article  CAS  Google Scholar 

  26. Monerri C, Garcia-Luis A, Guardiola JL (1986) Sugar and starch changes in pea cotyledons during germination. Physiol Plant 67:49–54

    Article  CAS  Google Scholar 

  27. Xu DP, Sung SJS, Blak CC (1989) Sucrose metabolism in lima bean seeds. Plant Physiol 89:1106–1116

    Article  CAS  PubMed  Google Scholar 

  28. Mishra P, Dubey RS (2008) Effect of aluminium on metabolism of starch and sugars in growing rice seedlings. Acta Physiol Plant 30(3):265–275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was received from the Tunisian Ministry of Higher Education, Scientific Research, and Technology (99/UR/09-18). The authors wish to thank Dr. Othman Bousandal for help regarding atomic absorption spectrophotometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzedine El Ferjani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfaxi-Bousbih, A., Chaoui, A. & El Ferjani, E. Copper Affects the Cotyledonary Carbohydrate Status During the Germination of Bean Seed. Biol Trace Elem Res 137, 110–116 (2010). https://doi.org/10.1007/s12011-009-8556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8556-x

Keywords

Navigation