Skip to main content

Advertisement

Log in

Arsenic contamination, speciation, toxicity and defense strategies in plants

  • Biochemistry & Physiology - Review Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

This review explains the transport, mobility, resistance and detoxification of toxic metalloid arsenic (As) in plants. Arsenic is ubiquitously present in Earth’s crust; however, numerous human interventions such as rapid industrialization use of As-based pesticides, insecticides and discharge of industrial wastes in water bodies leads to cumulative increase in As in the environment and has become a global challenge. Arsenic exists in different organic and inorganic forms, but inorganic forms such as pentavalent arsenate (AsV) and trivalent arsenite (AsIII) are more toxic and actively taken up by plants. Its toxicity is marked by generation of reactive oxygen species (ROS) that are capable of degrading various biomolecules of the cellular systems. To keep the ROS under the limit, plants have an array of enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione-S-transferase (GST); and non-enzymatic antioxidant like ascorbate, proline, and cysteine. Contrary to this, As-hyper-accumulator plants survive under high concentration of As through the strenuous action of Asv reduction into AsIII followed by the vacuolar compartmentalization of complex or inorganic As. Hence, this review focuses on the potential sources of As in the environment, its speciation and toxicity, and tolerance strategies in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    CAS  Google Scholar 

  • Abercrombie J, Halfhill M, Ranjan P, Rao M, Saxton A, Yuan J, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87

    PubMed  PubMed Central  Google Scholar 

  • Adriano DC (2001) Trace elements in the terrestrial environment, vol 47. Springer, New York, pp 217–286

    Google Scholar 

  • Ahmad P, Alam P, Balawi TH, Atalayan F, Ahanger AM, Ashraf M (2020a) Sodium nitropruside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemistry 244:125480

    CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Al-Huquail AA, Alqahtahi MA, Wijaya L, Asharaf M, Kaya C, Bajguz A (2020b) Zinc oxide nanoparticle application alleviates arsenite toxicity in Soybean plants by restricting the uptake of As and modulating key biochemical attributes, antioxidant enzymes ascorbate-glutathione cycle and glyoxalase system. Plants 9:825

    CAS  PubMed Central  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ et al (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    CAS  PubMed  Google Scholar 

  • Alsahli AA, Bhat JA, Alyemeni M, Asharaf M, Ahmad P (2020) Hydrogen sulide (H2S) mitigates arsenic induced toxicity in pea (Pisum sativum L.) plants by regulating osmoregulation, antioxidant defense system, ascorbate- glutathione cycle and glyoxalase system. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10254-6

    Article  Google Scholar 

  • Bhattacharya P, Jacks G, Ahmed KM, Routh J, Khan AA (2002) Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:538–545

    CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    PubMed  PubMed Central  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic a review part I: Occurrence, toxicity, speciation, and mobility. Acta Hydrochim Hydrobiol 31:9–18

    CAS  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcuslanatus. Plant J 45:917–929

    CAS  PubMed  Google Scholar 

  • Cao X, Ma LQ, Tub C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    CAS  PubMed  Google Scholar 

  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T et al (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    CAS  PubMed  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under nonsterile conditions. Appl Soil Ecol 45:262–268

    Google Scholar 

  • Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43:403–448

    CAS  PubMed  Google Scholar 

  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamyl cysteine synthetase expression. Nat Biotechnol 20:1140–1145

    CAS  PubMed  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). PNAS USA 103:5413–5418

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP (2016) A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    CAS  PubMed  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    CAS  PubMed  Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20:7728–7739

    CAS  Google Scholar 

  • Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321

    CAS  PubMed  Google Scholar 

  • Ernst WH, Krauss GJ, Verkleij JA, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  PubMed  Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate transporter traffic facilitator is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    PubMed  PubMed Central  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate-induced oxidative stress in Holcuslanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    CAS  Google Scholar 

  • Hasan MM, Hasan MM, da Silva JA, Li X (2016) Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 21:7

    PubMed  PubMed Central  Google Scholar 

  • Imamul-Huq SM, Joardar JC, Parvin S (2005) Marigold (Tagetespatula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil. Bangla J Bot 34:65–70

    Google Scholar 

  • Imamul-Huq SM, Parvin K, Rahman S, Joardar JC (2009) Response of cowpea (Vigna sinensis L.) to arsenic. Can J Pure Appl Sci 3:879–902

    Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P (2020) Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by up regulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 399:123020

    CAS  PubMed  Google Scholar 

  • Kumari A, Pandey N, Pandey-Rai S (2017) Protection of Artemisia annua roots and leaves againstoxidative stress induced by arsenic. Biol Planta 61:367–377

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamyl cysteine synthetase. Environ Toxicol Chem 24:1376–1386

    CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture. New Phytol 162:481–488

    CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. PNAS USA 105:9931–9935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    CAS  PubMed  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    CAS  PubMed  Google Scholar 

  • Meharg AA (2004) Arsenic in rice understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    CAS  PubMed  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    CAS  PubMed  Google Scholar 

  • Milivojevic DB, Nikolic BR, Drinic G (2006) Effects of arsenic on phosphorous content in different organs and chlorophyll fluorescence in primary leaves of soybean. Biol Plant 1:149–151

    Google Scholar 

  • Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936

    CAS  PubMed  Google Scholar 

  • Mishra PK, Sinha AK (2012) Rice diversity in Bankura district of West Bengal (India). Biosci Discov 3:284–287

    Google Scholar 

  • Mishra VK, Upadhyay AR, Pathak V, Tripathi B (2008) Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water Air Soil Pollut 192:303–314

    CAS  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch 456:679–686

    CAS  PubMed  Google Scholar 

  • Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Comm Soil Sci Plant Anal 33:1917–1926

    CAS  Google Scholar 

  • Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67

    Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, McDermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    CAS  PubMed  Google Scholar 

  • Ng JC (2005) Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2:146–160

    CAS  Google Scholar 

  • Patel A, Tiwari S, Prasad SM (2018) Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum. Ecotoxicol Environ Saf 167:369–379

    Google Scholar 

  • Patel A, Tiwari S, Prasad SM (2020) Effect of time interval on arsenic toxicity to paddy field cyanobacteria as evident by nitrogen metabolism, biochemica constituent, and exopolysaccharide content. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02289-3

    Article  PubMed  Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks A, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyper accumulating fern. Environ Sci Technol 40:5010–5014

    CAS  PubMed  Google Scholar 

  • Pigna M, Cozzolina V, Violante A, Meharg AA (2008) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Pollut 197:371–380

    Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MAM, Tasmin A (2007) Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh: a glass house study. Water Air Soil Pollut 185:53–61

    CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasim A (2008) Straight head disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exp Bot 62:54–59

    CAS  Google Scholar 

  • Rahman MA, Rahman MM, Kadohashi K, Maki T, Hasegawa H (2011) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.). Chemosphere 84:439–445

    PubMed  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    CAS  PubMed  Google Scholar 

  • Schulz H, Härtling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins—comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    CAS  Google Scholar 

  • Shaibur MR, Kawai S (2009) Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach. Environ Exp Bot 67:65–70

    CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    CAS  PubMed  Google Scholar 

  • Sharma AK, Tjell JC, Sloth JJ, Holm PE (2014) Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl Geochem 41:11–33

    CAS  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao F (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low and high phosphate environments. Plant J 39:629–642

    CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    CAS  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM et al (2015a) Adaptation strategies of plants against heavy metal toxicity: a short review. Biochem Pharmacol 4:161

    Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015b) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    CAS  PubMed  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015c) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252:1217–1229

    CAS  PubMed  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015d) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    CAS  PubMed  Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7:3592. https://doi.org/10.1038/s41598-017-03923-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Parihar P, Prasad P (2018) Simultaneous exposure of sulphr and calcium hinder As toxicity: up-regulation of growth, mineral nutrients uptake and antioxidant system. Ecotoxicol Environ Saf 161:318–331

    CAS  PubMed  Google Scholar 

  • Singh R, Parihar P, Prasad SM (2020) Interplay of calcium and nitric oxide in improvement of growth and arsenic-induced toxicity in mustard seedlings. Sci Rep 10:1–12

    CAS  Google Scholar 

  • Sinha S, Sinam G, Mishra RK, Mallick S (2010) Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to differentmetals. Ecotoxicol Environ Saf 73:1352–1361

    CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. PNAS USA 107:21187–21192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    CAS  PubMed  Google Scholar 

  • Srivastava S, Shrivastava M, Suprasanna P, D’Souza SF (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941

    Google Scholar 

  • Srivastava S, Upadhyay MK, Tripathi RD, Dhankher OP (2016) Arsenic transport, metabolism and toxicity in plants. Int J Plant Environ 2:1–12

    Google Scholar 

  • Stoeva N, Bineva TZ (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Stoeva N, Berova M, Vassilev A, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Planta 49:293

    CAS  Google Scholar 

  • Su YH, McGrath SP, Zhu YG, Zhao FJ (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441

    CAS  PubMed  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    CAS  PubMed  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiol 130:1552–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2001) Arsenic and arsenic compounds. Inter-organization programme for the sound management of chemicals. Environmental Health Criteria, Geneva, p 224

    Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao F (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:392–399

    Google Scholar 

  • Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author ‘Rohit Kumar Mishra’ is grateful to the University Grants Commission, New Delhi, for providing financial assistance as PDF under Dr. DS Kothari UGC Fellowship Scheme-F 4-2/2006 (BSR)/13-113/2013 (BSR), Sanjesh Tiwari is thankful to UGC-CSIR-SRF and Anuradha Patel is thankful to UGC-NFO-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Tiwari, S., Patel, A. et al. Arsenic contamination, speciation, toxicity and defense strategies in plants. Braz. J. Bot 44, 1–10 (2021). https://doi.org/10.1007/s40415-020-00694-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-020-00694-5

Keywords

Navigation