Skip to main content
Log in

Ambient seismic noise Rayleigh wave tomography for the Pannonian basin

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

We studied the Rayleigh wave group velocities beneath Hungary using ambient seismic noise tomography. Noise data were gathered from 17 broadband seismological stations in and around the Pannonian basin. The cross-correlation method was used to calculate the Green’s functions. Group velocities belonging to the fundamental mode Rayleigh waves were determined by multiple filter technique. We measured the dispersion curves for each station pair in a period range of 7–28 s and computed maps of group velocity distribution using a 2D tomography method. The group velocity maps of 7–14 s periods correlate well with sedimentary thickness and regional geology. Velocity anomalies observed at longer periods reflect the effect of the crustal and mantle structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ádám A, Bielik M (1998) The crustal and upper-mantle geophysical signature of narrow continental rifts in the Pannonian basin. Geophys J Int 134(1):157–171

    Article  Google Scholar 

  • Babuška V, Plomerová J, Sileny J (1984) Spatial variations of P residuals and deep structure of the European lithosphere. Geophys J R Astron Soc 79:363–383

    Article  Google Scholar 

  • Bada G, Horváth F, Cloetingh S, Coblentz DD, Tóth T (2001) Role of topography-induced gravitational stresses in basin inversion: the case study of the Pannonian basin. Tectonics 20:343–363

    Article  Google Scholar 

  • Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58(1):165–180

    Article  Google Scholar 

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239–1260. doi:10.1111/j.1365-246X.2007.03374.x

    Article  Google Scholar 

  • Bensen GD, Ritzwoller MH, Shapiro NM (2008) Broadband ambient noise surface wave tomography across the United States. J Geophys Res 113:B05306. doi:200810.1029/2007JB005248

    Article  Google Scholar 

  • Boaga J, Vaccari F, Panza GF (2010) Shear wave structural models of Venice Plain, Italy, from time cross correlation of seismic noise. Eng Geol 116(3–4):189–195

    Article  Google Scholar 

  • Bondár I, Bus Z, Zivcic M, Costa G, Levshin A (1996) Rayleigh wave group and phase velocity measurements in the Pannonian basin. In: Special publications of the geological society of Greece, vol 6, pp 73–86

    Google Scholar 

  • Bus Z (2003) S-wave velocity structure beneath the Mátra Mountains (Hungary) inferred from teleseismic receiver functions. Acta Geod Geophys Hung 38(1):93–102. doi:10.1556/AGeod.38.2003.1.11

    Article  Google Scholar 

  • Bus Z (2004) A Kárpát-medence szeizmikus hullámsebesség-eloszlásának tomográfiai vizsgálata. PhD thesis, Eötvös Loránd Tudományegyetem, Budapest

  • Calcagnile G, Panza GF (1990) Crustal and upper mantle structure of the Mediterranean area derived from surface-wave data. Phys Earth Planet Inter 60:163–168

    Article  Google Scholar 

  • Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299(5606):547–549. doi:10.1126/science.1078551

    Article  Google Scholar 

  • Dando BDE, Stuart GW, Houseman GA, Hegedűs E, Brückl E, Radovanović S (2011) Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe. Geophys J Int 186(1):11–31

    Article  Google Scholar 

  • Ditmar PG, Yanovskaya TB (1987) Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities. Phys Solid Earth, Izv Acad Sci USSR 23(6):470–477

    Google Scholar 

  • Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444

    Google Scholar 

  • Fan G, Wallace TC (1998) Tomographic imaging of deep velocity structure beneath the eastern and southern Carpathians, Romania: implications for continental collision. J Geophys Res 103(B2):2705–2723

    Article  Google Scholar 

  • Gaite B, Iglesias A, Villaseñor A, Herraiz M, Pacheco JF (2012) Crustal structure of Mexico and surrounding regions from seismic ambient noise tomography. Geophys J Int 188(3):1413–1424. doi:10.1111/j.1365-246X.2011.05339.x

    Article  Google Scholar 

  • Gráczer Z, Wéber Z (2012) One-dimensional P-wave velocity model for the territory of Hungary from local earthquake data. Acta Geod Geophys Hung 47(3):344–357

    Article  Google Scholar 

  • Grad M, Guterch A, Keller G, Janik T, Hegedűs E, Vozár J, Ślaczka A, Tiira T, Yliniemi J (2006) Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL05. J Geophys Res 111:B03301

    Article  Google Scholar 

  • Grad M, Tiira T, ECS Working Group (2009) The Moho depth map of the European Plate. Geophys J Int 176(1):279–292

    Article  Google Scholar 

  • Granet M, Trampert J (1989) Large-scale P-velocity structures in the Euro-Mediterranean area. Geophys J Int 99:583–594

    Article  Google Scholar 

  • Guterch A, Grad M, Keller GR, Posgay K, Vozár J, Špičák A, Brückl E, Hajnal Z, Thybo H, Oguz S (2000) CELEBRATION 2000: huge seismic experiment in Central Europe. Geol Carpath 51:413–414

    Google Scholar 

  • Guterch A, Grad M, Špičák A, Brückl E, Hegedűs E, Keller GR, Thybo H (2003) Special contribution: an overview of recent seismic refraction experiments in Central Europe. Stud Geophys Geod 47(3):651–657

    Article  Google Scholar 

  • He Z, Ye T, Su W (2005) 3-D velocity structure of the middle and upper crust in the Yunnan region. China Pure Appl Geophys 162(12):2355–2368

    Article  Google Scholar 

  • Hearn TM (1999) Uppermost mantle velocities and anisotropy beneath Europe. J Geophys Res 104(B7):15123–15139. doi:199910.1029/1998JB900088

    Article  Google Scholar 

  • Herrmann R (1973) Some aspects of band-pass filtering of surface waves. Bull Seismol Soc Am 63(2):663

    Google Scholar 

  • Herrmann RB, Ammon CJ (2002) Computer programs in seismology: surface waves, receiver functions and crustal structure. Saint Louis University, Missouri

  • Hetényi G, Bus Z (2007) Shear wave velocity and crustal thickness in the Pannonian basin from receiver function inversions at four permanent stations in Hungary. J Seismol 11:405–414. doi:10.1007/s10950-007-9060-4

    Article  Google Scholar 

  • Hetényi G, Stuart GW, Houseman GA, Horváth F, Hegedűs E, Brückl E (2009) Anomalously deep mantle transition zone below Central Europe: evidence of lithospheric instability. Geophys Res Lett 36(21):L21307

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226(1):333–357

    Article  Google Scholar 

  • Horváth F (1995) Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Mar Petroleum Geol 12(8):837–844

    Article  Google Scholar 

  • Horváth F (2007) A pannon-medence geodinamikája—eszmetörténeti tanulmány és geofizikai szintézis. PhD thesis, Eötvös Loránd Tudományegyetem, Budapest

  • Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 266(1):287–300

    Article  Google Scholar 

  • Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Grenerczy G, Síkhegyi F, Szafián P, Székely B, Timár G, Tóth L, Tóth T (2006) Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text. Magy Geofiz 47:133–137

    Google Scholar 

  • Hovland J, Gubbins D, Husebye ES (1981) Upper mantle heterogeneities beneath Central Europe. Geophys J R Astron Soc 66:261–284

    Article  Google Scholar 

  • Kim S, Nyblade AA, Rhie J, Baag CE, Kang TS (2012) Crustal S-wave velocity structure of the Main Ethiopian Rift from ambient noise tomography. Geophys J Int 191(2):865–878. doi:10.1111/j.1365-246X.2012.05664.x

    Article  Google Scholar 

  • Larose E (2004) Imaging from one-bit correlations of wideband diffuse wave fields. J Appl Phys 95(12):8393. doi:10.1063/1.1739529

    Article  Google Scholar 

  • Larose E, Derode A, Clorennec D, Margerin L, Campillo M (2005) Passive retrieval of Rayleigh waves in disordered elastic media. Phys Rev E 72(4):046607. doi:10.1103/PhysRevE.72.046607

    Article  Google Scholar 

  • Lenkey L (1999) Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution. PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands

  • Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. Neotectonics and surface processes: the Pannonian basin and Alpine/Carpathian system 3:29–40

    Google Scholar 

  • Li H, Li S, Song XD, Gong M, Li X, Jia J (2012) Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys J Int. doi:10.1111/j.1365-246X.2011.05205.x

    Google Scholar 

  • Lobkis OI, Weaver RL (2001) On the emergence of the Green’s function in the correlations of a diffuse field. J Acoust Soc Am 110:3011. doi:10.1121/1.1417528

    Article  Google Scholar 

  • Mele G, Rovelli A, Seber D, Hearn TM, Barazangi M (1998) Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and surrounding regions. J Geophys Res 103:12529–12544

    Article  Google Scholar 

  • Mónus P (1995) Travel times curves and crustal velocity model for the Pannonian basin. MTA GGKI Technical Report

  • Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108(B2):ESE 1–ESE 23

    Article  Google Scholar 

  • Posgay K, Albu I, Ráner G, Varga G (1986) Characteristics of the reflecting layers in the Earth’s crust and upper mantle in Hungary. In: Reflection seismology: a global perspective. AGU geodyn ser, vol 13, pp 55–65

    Chapter  Google Scholar 

  • Posgay K, Bodoky T, Hegedűs E, Kovácsvölgyi S, Lenkey L, Szafián P, Takács E, Timár Z, Varga G (1995) Asthenospheric structure beneath a Neogene basin in southeast Hungary. Tectonophysics 252:467–484

    Article  Google Scholar 

  • Ratschbacher L, Merle O, Davy P, Cobbold P (1991) Lateral extrusion in the Eastern Alps, part 1: boundary conditions and experiments scaled for gravity. Tectonics 10(2):245–256

    Article  Google Scholar 

  • Royden L, Horváth F (1988) The Pannonian basin: a study in basin evolution. Memoir, vol 45. American Association of Petroleum Geologists, Tulsa, pp 27–48

    Google Scholar 

  • Royden LH, Horváth F, Burchfiel B (1982) Transform faulting, extension, and subduction in the Carpathian Pannonian region. Geol Soc Am Bull 93(8):717–725

    Article  Google Scholar 

  • Sabra KG, Gerstoft P, Fehler MC, Gerstoft P, Roux P, Kuperman WA, Kuperman WA, Fehler MC (2005) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32:L03310

    Article  Google Scholar 

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:5

    Article  Google Scholar 

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715):1615–1618. doi:10.1126/science.1108339

    Article  Google Scholar 

  • Spakman W, van der Lee S, van der Hilst R (1993) Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys Earth Planet Inter 79:3–74

    Article  Google Scholar 

  • Szafián P, Horváth F, Cloetingh S (1997) Gravity constraints on the crustal structure and slab evolution along a transcarpathian transect. Tectonophysics 272(2):233–247

    Article  Google Scholar 

  • Verbeke J, Boschi L, Stehly L, Kissling E, Michelini A (2012) High-resolution Rayleigh-wave velocity maps of Central Europe from a dense ambient-noise data set. Geophys J Int 188(3):1173–1187. doi:10.1111/j.1365-246X.2011.05308.x

    Article  Google Scholar 

  • Villaseñor A, Ritzwoller M, Levshin A, Barmin M, Engdahl E, Spakman W, Trampert J (2001) Shear velocity structure of central Eurasia from inversion of surface wave velocities. Phys Earth Planet Inter 123(2–4):169–184

    Article  Google Scholar 

  • Villaseñor A, Yang Y, Ritzwoller MH, Gallart J (2007) Ambient noise surface wave tomography of the Iberian Peninsula: implications for shallow seismic structure. Geophys Res Lett 34:11304

    Article  Google Scholar 

  • Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13):134301

    Article  Google Scholar 

  • Wéber Z (2002) Imaging Pn velocities beneath the Pannonian basin. Phys Earth Planet Inter 129(3–4):283–300. doi:10.1016/S0031-9201(01)00299-0

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans 72:441–446

    Article  Google Scholar 

  • Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. Eos Trans 79:579

    Article  Google Scholar 

  • Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168(1):259–274. doi:10.1111/j.1365-246X.2006.03203.x

    Article  Google Scholar 

  • Yanovskaya TB, Ditmar PG (1990) Smoothness criteria in surface wave tomography. Geophys J Int 102(1):63–72

    Article  Google Scholar 

  • Yanovskaya TB, Kozhevnikov VM (2003) 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Phys Earth Planet Inter 138(3–4):263–278

    Article  Google Scholar 

  • Yao H, Van Der Hilst RD, De Hoop MV (2006) Surface wave array tomography in SE Tibet from ambient seismic noise and two station analysis—I. Phase velocity maps. Geophys J Int 166(2):732–744

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor Tatiana B. Yanovskaya of the University of St. Petersburg, Russia for providing the tomographic inversion program and to Robert B. Herrmann for making freely available his software package called “Computer programs in seismology”.

We are very grateful for allowing us to use seismic data and for the instrument parameters to the following people and institutions: Mladen Živčić at the Slovenian Environment Agency; Helmut Hausmann at the Abteilung für Geophysik—Seismologie at Zentralanstalt für Meteorologie und Geodynamik; Constantin Ionescu at the Romanian seismological observatory; Jana Pazdírková at Institute of Physics of the Earth, Masaryk University Brno and Krisztián Csicsay at Department of Seismology, Geophysical Institute, Slovak Academy of Sciences.

This study was supported by the TAMOP-4.2.2.C–11/1/KONV-2012-0015 (Earth-system) project sponsored by the EU and European Social Foundation and the Hungarian Scientific Research Fund under Grant OTKA K105399.

All figures were generated with the Generic Mapping Tools (GMT) data processing and display software package (Wessel and Smith 1991, 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyöngyvér Szanyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szanyi, G., Gráczer, Z. & Győri, E. Ambient seismic noise Rayleigh wave tomography for the Pannonian basin. Acta Geod Geophys 48, 209–220 (2013). https://doi.org/10.1007/s40328-013-0019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-013-0019-3

Keywords

Navigation