Skip to main content
Log in

Rayleigh-Wave, Group-Velocity Tomography of the Borborema Province, NE Brazil, from Ambient Seismic Noise

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Ambient seismic noise has traditionally been regarded as an unwanted perturbation that “contaminates” earthquake data. Over the last decade, however, it has been shown that consistent information about subsurface structure can be extracted from ambient seismic noise. By cross-correlation of noise simultaneously recorded at two seismic stations, the empirical Green’s function for the propagating medium between them can be reconstructed. Moreover, for periods less than 30 s the seismic spectrum of ambient noise is dominated by microseismic energy and, because microseismic energy travels mostly as surface-waves, the reconstruction of the empirical Green’s function is usually proportional to the surface-wave portion of the seismic wavefield. In this paper, we present 333 empirical Green’s functions obtained from stacked cross-correlations of one month of vertical component ambient seismic noise for different pairs of seismic stations in the Borborema Province of NE Brazil. The empirical Green’s functions show that the signal obtained is dominated by Rayleigh waves and that dispersion velocities can be measured reliably for periods between 5 and 20 s. The study includes permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region, resulting in a combined network of 34 stations separated by distances between approximately 40 and 1,287 km. Fundamental-mode group velocities were obtained for all station pairs and then tomographically inverted to produce maps of group velocity variation. For short periods (5–10 s) the tomographic maps correlate well with surface geology, with slow velocities delineating the main rift basins (Potiguar, Tucano, and Recôncavo) and fast velocities delineating the location of the Precambrian São Francisco craton and the Rio Grande do Norte domain. For longer periods (15–20 s) most of the velocity anomalies fade away, and only those associated with the deep Tucano basin and the São Francisco craton remain. The fading of the Rio Grande do Norte domain fast-velocity anomaly suggests this is a supracrustal structure rather than a lithospheric terrain, and places new constraints on the Precambrian evolution of the Borborema Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida, F.F.M., Carneiro, C.D.R., Machado Jr., D.L., Dehira, L.K., (1988). Magmatismo Pós-Paleozóico no Nordeste Oriental do Brasil. Revista Brasileira de Geociências, 18(4): 451–462.

  • Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, H.A., (1981). Brazilian structural provinces: an introduction. Earth-Science Reviews 17 (1–2): 1–29.

  • Almeida, F.F.M., Brito Neves, B.B., Carneiro, C.D.R., (2000). The origin and evolution of the South American Platform. Earth-Science Reviews, 50, 77–111.

  • Ammon, C.J., Notes on Seismic Surface-Wave Processing, Part I, Group Velocity Estimation. (2001). Saint Louis University. Version 3.9.0. Surface Wave Multiple Filter Analysis Software Documents.

  • Assumpção, M., Feng, M., Tassara, A., Julià, J., (2013). Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics, doi:10.1016/j.tecto.2012.11.014.

  • Bensen, G.D., M.H. Ritzwoller, M.P. Barmin, A.L. Levshin, F. Lin, M.P. Moschetti, N.M. Shapiro, Y. Yang (2007), Processing seismic ambient noise data to obtain reliable broad-band surface-wave dispersion measurements, Geophys. J. Int., 169, 1239–1260.

  • Bensen, G.D., Ritzwoller, M.H., Shapiro, N.M., (2008). Broadband ambient noise surface wave tomography across the United States. J. Geophys. Res. 113 (B5), B05306 doi:10.1029/2007JB005248.

  • Bracewell, R.N., (1965). The Fourier transform and its applications, McGraw-Hill, New York, NY.

  • Brito Neves, B.B., Cordani U.G. (1991). Tectonic evolution of South America during the Late Proterozoic. Precambrian Research, 53(191):23–40.

  • Bromirski, P. D. (2001), Vibrations from thePerfect Storm,” Geochem. Geophys. Geosyst., 2(7), doi:10.1029/2000GC000119.

  • Bromirski, P., and F. Duennebier, (2002). The near-coastal microseism spectrum: Spatial and temporal wave climate relationships. Journal of Geophysical Research 107, doi:10.1029/2001JB000265.

  • Bromirski, P.D. (2009), Earth vibrations, Science, 324, 1026–1027.

  • Campelo, R. C. (1999). Análise de Terrenos na Porção Setentrional da Província Borborema, NE do Brasil: Integração de Dados Geológicos e Gravimétricos. Dissertação de Mestrado, Programa de Pós-Graduação em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte, Natal, 130p.

  • Campillo, M., A. Paul (2003), Long-range correlations in the diffuse seismic coda, Science, 299, 547–549.

  • Cordani U.G., Brito Neves B.B. and D’Agrella-Filho M.S. (2003). From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Research, 6(2):275–283.

  • Cupillard, P. and Capdeville Y. (2010). On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach. Geophys. J. Int., doi: 10.1111/j.1365-246X.2010.04586.x.

  • Da Silva, A.J.P., Lopes, R.C., Vasconcelos, A.M., Bahia, R.B.C. (2003). Paleozoic and Meso-Cenozoic sedimentary basins. In: Bizzi, L.A., Schobbenhaus, C., Vidotti, R.M., Gonçalves, J.H. (Eds), Geologia, Tectônica e Recursos Minerais do Brasil, CPRM, Brasília, pp. 55–85.

  • De Castro D.L., Bezerra F.H.R., Castelo Branco R. M. G., (2008). Geophysical evidence of crustal-heterogeneity control of fault growth in the Neocomian Iguatu basin, NE Brazil. Journal of South American Earth Sciences, v. 26, p. 271–285.

  • Dziewonski, A., Bloch, S., and Landisman, M., (1969). A technique for analysis of transient seismic signals. Bull. Seism. Soc. Am., 59(1):427–444.

  • Feng, M., 2004. Tomografia de Ondas de Superfície na América do Sul: Inversão Conjunta de Velocidade de Grupo e Forma de Onda. PhD tese, IAG, Universidade de São Paulo, São Paulo, Brasil.

  • Feng, M., Assumpcao, M., Van der Lee, S., (2004). Group-velocity tomography and litho- spheric S-velocity structure of the South American continent. Physics of the Earth and Planetary Interiors 147(4), 315–331.

  • Feng, M., Lee, S.V.D., Assumpção, M., (2007). Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. Journal of Geophysical Research 112, 1–16.

  • Friedrich, A., F. Krüger, and K. Klinge (1998), Ocean generated microseismic noise located with the Gräfenberg array, J. Seismol., 2, 47–64.

  • Herrin, E., and Goforth, T., (1977). Phase-matched filters: Application to the study of Rayleigh waves. Bull. Seism. Soc. Am., 67:1259–1275.

  • Herrmann, R. B., and Ammon, C. J., 2002. Computer programs in seismology surface waves, receiver functions and crustal structure. St. Louis University, St. Louis, MO.

  • Jardim de Sá, E.F., Fuck R.A., Macedo M.H.F. and Kawashita K. (1992). Terrenos Proterozóicos na Província Borborema e a margem Norte do Cráton São Francisco. Revista Brasileira de Geociências, 22(4):472–480.

  • Jardim de Sá, E.F. (1994). A Faixa Seridó (Província Borborema, NE do Brasil) e o seu significado geodinâmico na Cadeia Brasiliana/Pan-Africana. Instituto de Geociências da Universidade de Brasília, Brasília, Tese de Doutorado, 804 p.

  • Jardim de Sá, E.F., Matos, R.M.D., Morais Neto, J.M., Saadi, A., (1999). Epirogenia cenozóica na Província Borborema: síntese e discussão sobre os modelos de deformação associados. VII Simpósio Nacional de Estudos Tectônicos, Soc. Bras. de Geol., Lençóis, Brazil, Boletim de Resumos Expandidos, pp. 58 e 61.

  • Jardim de Sá, E.F., (2001). Tectônica cenozóica na margem equatorial brasileira da Província Borborema, Nordeste do Brasil (A contribuição da geologia estrutural no continente). VIII Simpósio Nacional de Estudos Tectônicos, Soc. Bras. de Geol., Recife, Brazil, Boletim de Resumos Expandidos, pp. 25 e 28.

  • Jardim de Sá E.F., Vasconcelos P.M., Saadi A., Galindo A.C., Lima M.G. and Oliveira M.J. (2005). Marcos temporais para a evolução cenozóica do Planalto da Borborema. In: SBG/Núcleo Paraná, Simpósio Nacional de Estudos Tectônicos, 10o, Curitiba, Boletim de Resumos Expandidos, p. 160–162.

  • Kennett, B. L. N., Sambridge, M. S., and Williamson, P. R., (1988). Subspace methods for large scale inverse problems involving multiple parameter classes: Geophysical Journal, 94, 237–247.

  • Knesel, K.M., Souza, Z.S., Vasconcelos, P.M., Cohen, B.E., Silveira, F.V., (2011). Young volcanism in the Borborema Province, NE Brazil, shows no evidence for a trace of the Fernando de Noronha plume on the continent. Earth and Planetary Science Letters 302, 38–50.

  • LaCoss, R. T., E. J. Kelly and M. N. Toksoz, (1969). Estimation of seismic noise using Arrays. Geophysics 34, No.1: 21–38.

  • Larose, E., Derode, A., Campillo, M. and Fink, M., (2004). Imaging from one bit correlations of wide-band diffuse wavefields. J. Appl. Phys., 95(12), 8393–8399.

  • Lloyd, S., van der Lee, S., França, G. S., Assumpção, M., Feng, M., (2010). Moho map of South America from receiver functions and surface waves. J. Geophys. Res.-Sol. Ea. 115 (B11), doi:10.1029/2009JB006829.

  • Lobkis, O.I., R.L. Weaver (2001), On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011–3017.

  • Matos, R. M.D., (1992). The Northeast Brazilian Rift System. Tectonics, 11(4):766–791.

  • Matos, R.M.D., (1999). History of the northeast Brazilian rift system: kinematic implications for the break-up between Brazil and West Africa. In: Cameron N.R., Bate R.H. and Clure V.S. (eds.) The Oil and Gas Habitats of the South Atlantic. Geological Society, London, Special Publications, 153:55–73.

  • Mizusaki, A.M.P., Thomas-Filho, A., Milani, P. and Césero, P. (2002). Mesozoic and Cenozoic igneous activity and its tectonic control in Northeastern Brazil. Journal of South American Earth Sciences 15, 183–198.

  • Morais Neto, J. M., Hegarty, K. A., Karter, G. D. and Alkimim, F. F., (2009). Timing and mechanisms for the generation and modification of anomalous topography of Borborema Province, northeastern Brazil, Marine and Petroleum Geology 26, 1070–1086.

  • Mottaghi, A. A., Rezapour, M., Korn, M. Ambient noise surface wave tomography of the Iranian Plateau. Geophys. J. Int. (2013) 193, 452–462. doi:10.1093/gji/ggs134.

  • Neves, S.P., Vauchez A. and Feraud G. (2000). Tectono-thermal evolution, magma emplacement, and shear zone development in the Caruaru area (Borborema Province, NE Brazil). Precambrian Research, 99: 1–32.

  • Neves, S.P. (2003). Proterozoic history of the Borborema Province (NE Brazil): correlation with neighboring cratons and Pan-African belts, and implications for the evolution of western Gondwana, Tectonics, 22:10–31.

  • Neves, S.P. Bruguier, O., Vauchez, A., Bosch, D., Silva, J.M.R., Mariano, G., (2006). Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Research 149, 197–216.

  • Oliveira, R.G., 2008. Arcabouço Geofísico, Isostasia e Causas do Magmatismo Cenozóico da Província Borborema e de sua Margem Continental (Nordeste do Brasil). Tese de Doutorado, Programa de Pós-Graduacao em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte.

  • Oliveira, R. G. and Medeiros,W. E. (2012). Evidences of buried loads in the base of the crust of Borborema Plateau (NE Brazil) from Bouguer admittance estimates. J. South. Am. Earth Sci., 37, 60–76.

  • Pedrosa, N.C., de Castro, D.L., de Matos, J.P.L. (2010). Assinaturas magnéticas e gravimétricas do arcabouço estrutural da bacia Potiguar emersa, NE do Brasil. Rev. Bras. Geof., 28, 276–282.

  • Pinheiro, A.G. and Julià, J. (2014). Normal thickness of the upper mantle transition zone in NE Brazil does not favour mantle plumes as origin for intraplate Cenozoic volcanism, Geophys. J. Int., 199, 996–1005.

  • Rawlinson, N., 2005. FMST: Fast Marching Surface Tomography package, Research School of Earth Sciences, Australian National University, Canberra ACT 0200.

  • Rawlinson, N. and Sambridge, M., (2005). The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media, Expl. Geophys., 36, 341–350.

  • Rawlinson, N., Pozgay S., Fishwick, S, (2010). Seismic tomography: A window into deep Earth. Geoscience. doi:10.1016/j.pepi.2009.10.002.

  • Sabra, K. G., P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler (2005), Surface wave tomography from microseism in southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155.

  • Santos, E. J. and Medeiros V. C., 1999. Constraints from granitic plutonism on proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29:73–84.

  • Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G. and Medeiros V.C. (2000). An overall view on the displaced terrane arrangement of the Borborema Province, NE Brazil. In: International Geological Congress, 31th, Rio de Janeiro, Brazil, General Symposia, Tectonic Evolution of South American Platform, 9-5, 1 cd-rom.

  • Santos, E.J., Schmus, W.R.V., Kozuch, M., (2010). The Cariris Velhos tectonic event in Northeast Brazil. Journal of South American Earth Sciences, 29, 61–76.

  • Schimmel, M. and Paulssen, H., (1997). Noise reduction and detection of weak, coherent signals through phase weighted stacks, Geophys. J. Int., 130, 497–505, doi:10.1111/j.1365-246X.1997.tb05664.x.

  • Schimmel, M. and Gallart, J., (2005). The inverse S Transform in filters with timefrequency localization, IEEE Trans. Signal Process., 53(11), 4417–4422, doi:10.1109/TSP.2005.857065.

  • Schimmel, M. and Gallart, J., (2007). Frequency-dependent phase coherence for noise suppression in seismic array data, J. Geophys. Res., 112, B04303, doi:10.1029/2006JB004680.

  • Schimmel, M., Stutzmann, E., and Gallart, J., (2011). Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale, Geophys. J. Int. 184, 494–506. doi:10.1111/j.1365-246X.2010.04861.x.

  • Sethian, J. A., (1996), A fast marching level set method for monotonically advancing fronts: Proceedings of the National Academy of Science, 93, 1591–1595.

  • Sethian, J. A. and Popovici, A. M., (1999), 3-D traveltime computation using the fast marching method: Geophysics, 64, 516–523.

  • Shapiro, N., M. Campillo (2004), Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491.

  • Shapiro, N. M., M. Campillo, L. Stehly, and M. Ritzwoller (2005). High-resolution surface-wave tomography from ambient seismic noise. Science 307, 1,615–1,618.

  • Snieder, R. (2004), Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, 046610, doi:10.1103/PhysRevE.69.046610.

  • Stehly, L., Campillo, M. and Shapiro, N., (2006). A study of the seismic noise from its long-range correlation properties. J. Geophys. Res., 111, B10306, doi:10.1029/2005JB004237.

  • Stockwell, R. G., L. Mansinha, and R. P. Lowe (1996), Localization of the complex spectrum: The S-transform, IEEE Trans. Signal Process., 44, 998–1001.

  • Tanimoto, T. (1991). Waveform inversion for three-dimensional density and S-wave structure, J. Geophys. Res., 96, 8167–8189.

  • Trompette R. (1994). Geology of Western Gondwana (2000–500 Ma): Pan-African–Brasiliano Aggregation of South América and Africa. A.A. Balkema, Rotterdam, Brookfield, 350p.

  • Ussami R., Molina E. C. and Medeiros W. E. (1999). Novos vínculos sobre a evolução térmica da margem continental leste do Brasil. In: SBG-BA/ABGP, VII Simpósio Nacional de Estudos Tectônicos, Lençóis, Anais, S3:20–23.

  • Villaseñor, A., Y. Yang, M.H. Ritzwoller, J. Gallart (2007), Ambient noise surface-wave tomography of the Iberian Península: Implications for shallow seismic structure, Geophys. Res. Lett., 34, L11304, doi:10.1029/2007GL030164.

  • Wessel, P., Smith, W.H.F., (1998). New, improved version of the generic mapping tools released. Eos Trans. AGU 79, 579.

Download references

Acknowledgments

This work was supported in part by the Instituto Nacional de Ciência e Tecnologia em Estudos Tectônicos (INCT-ET) of the Brazilian Centro Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 57.3713/2008-01). RCD was supported by a two-year scholarship from CNPq to complete her M.Sc. degree at UFRN. JJ thanks CNPq for his research fellowship (CNPq, grant number 308171/2012-8) and MS acknowledges support by the Brazilian Science Without Border Program (CNPq, grant number 40.2174/2012-7). M. Assumpção and an anonymous reviewer are thanked for thorough review of the original manuscript. Most of the figures were produced with the generic mapping tools of Wessel and Smith (1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Julià.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, R.C., Julià, J. & Schimmel, M. Rayleigh-Wave, Group-Velocity Tomography of the Borborema Province, NE Brazil, from Ambient Seismic Noise. Pure Appl. Geophys. 172, 1429–1449 (2015). https://doi.org/10.1007/s00024-014-0982-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0982-9

Keywords

Navigation