Skip to main content
Log in

Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Receiver functions of teleseismic waveforms recorded at four Hungarian permanent broadband stations have been analyzed using semilinearized and stochastic inversion methods to estimate the crustal thickness and S wave velocity structure in the Pannonian Basin. The results of both inversion methods agree well with the crustal thicknesses obtained by previous seismic refraction and reflection studies in the regions which are densely covered with seismic lines (28 and 27 km in westernmost and southern Hungary, respectively) and suggest a thicker crust compared to what was known before beneath the Transdanubian and Northern Ranges (34 and 33 km, respectively). The comparison of the one-dimensional shear wave velocity models derived by the different inversion methods shows that, in case of simple, smoothly varying structures, the results do not differ significantly and can be regarded as absolute velocities. Otherwise, the recovered velocity gradients agree, but there are differences in the absolute velocity values. The back-azimuthal variations of both radial and tangential receiver functions are interpreted as dipping structure and as waves sampling different geological areas. The signature of the deep structure on low-frequency receiver functions suggests a strong velocity contrast at the 670-km discontinuity. The vanishing 410-km boundary may be attributed to the remnant of a subducted oceanic slab with increased Poisson’s ratio in the transition zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ádám A, Landy K, Nagy Z (1989) New evidence for the distribution of the electric conductivity in the Earth’s crust and upper mantle in the Pannonian Basin as a “hotspot”. Tectonophysics 164:361–368

    Article  Google Scholar 

  • Ammon CJ, Randall GE, Zandt G (1990) On the nonuniqueness of receiver function inversions. J Geophys Res 95:15303–15318

    Google Scholar 

  • Bada G, Horváth F, Cloething S, Coblentz D, Tóth T (2001) Role of topography-induced gravitational stresses in basin inversion: the case study of the Pannonian Basin. Tectonics 20(3):343–363

    Article  Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, part 2. J Geophys Res 66:2199–2224

    Google Scholar 

  • Bus Z (2003) S-wave velocity structure beneath the Mátra Mountains (Hungary) inferred from teleseismic receiver functions. Acta Geod Geophys Hung 38(1):93–102

    Article  Google Scholar 

  • Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter 138(3):197–222

    Article  Google Scholar 

  • Grad M, Guterch A, Keller GR, Janik T, Hegedűs E, Vozár J, Ślączka A, Tiira T, Yliniemi J (2006) Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian Basin: CELEBRATION 2000 seismic profile CEL05. J Geophys Res 111:B03301

    Article  Google Scholar 

  • Hetényi G, Cattin R, Vergne J, Nábĕlek JL (2006) The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modelling. Geophys J Int 167(3):1106–1118

    Article  Google Scholar 

  • Heuer B, Kämpf H, Kind R, Geissler WH (2007) Seismic evidence for whole lithosphere separation between Saxothuringian and Moldanubian tectonic units in central Europe. Geophys Res Lett 34:L09304

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226:333–357

    Article  Google Scholar 

  • Horváth F, Bada G, Windhoffer G, Csontos L, Dövényi P, Fodor L, Grenerczy G, Síkhegyi F, Szafián P, Székely B, Timár G, Tóth L, Tóth T (2005) Atlas of the present-day geodynamics of the Pannonian Basin: Euroconform maps with explanatory text. http://geophysics.elte.hu/projektek/geodinamikai_atlasz_eng.htm

  • Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J Geophys Res 110:B11305

    Article  Google Scholar 

  • Karátson D, Csontos L, Harangi Sz, Székely B, Kovácsvölgyi S (2001) Volcanic successions and the role of destructional events in the Western Mátra Mountains, Hungary: implications for the volcanic structure. Géomorphologie 2:79–92

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465

    Article  Google Scholar 

  • Langston C (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762

    Article  Google Scholar 

  • Ligorría J, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 88:1395–1400

    Google Scholar 

  • Ligorría JP (2000) An investigation of the mantle–crust transition beneath North-America and Poisson’s ratio of the North American Crust. Ph.D. thesis, Saint Louis University – St. Louis, MO, USA

  • Mónus P (1995) Travel time curves and crustal velocity model for the Pannonian basin. Technical Report, MTA GGKI, Budapest, 6 pp

  • Praus O, Pěčová J, Petr V, Babuška V, Plomerová J (1990) Magnetotelluric and seismological determination of the lithosphere-asthenosphere transition in Central Europe. Phys Earth Planet Inter 60:212–228

    Article  Google Scholar 

  • Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm – I. Searching the parameter space. Geophys J Int 138:479–494

    Article  Google Scholar 

  • Sambridge M (2001) Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Problems 17:387–403

    Article  Google Scholar 

  • Savage MK (1998) Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J Geophys Res 103:15069–15087

    Article  Google Scholar 

  • Środa P, Czuba W, Grad M, Guterch A, Tokarski AK, Janik T, Rauch M, Keller GR, Hegedüs E, Vozár J, CELEBRATION 2000 Working Group (2006) Crustal and upper mantle structure of the Western Carpathians from CELEBRATION 2000 profiles CEL01 and CEL04: seismic models and geological implications. Geophys J Int 167(2):737–760

    Article  Google Scholar 

  • Świeczak M, Grad M, TOR and SVEKALAPKO working groups (2004) Upper mantle seismic discontinuities topography variations beneath Eastern Europe. Acta Geophys Pol 52(3):251–270

    Google Scholar 

  • Tapponnier P (1976) Évolution tectonique du système alpin en Méditerranée: poinçonnement et écrasement rigide-plastique. Bull Soc Géol France XIX(3):437–460

    Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EoS Trans. AGU, 72, pp. 441 and 445–446

    Google Scholar 

  • Wilde-Piórko M, Saul J, Grad M (2005) Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Stud Geophys Geod 49(1):85–107

    Article  Google Scholar 

  • Wortel MJT, Spakman W (2000) Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290:1910–1917

    Article  Google Scholar 

  • Zhu L, Kanamori H (2000) Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res 105:2969–2980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Hetényi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetényi, G., Bus, Z. Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary. J Seismol 11, 405–414 (2007). https://doi.org/10.1007/s10950-007-9060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-007-9060-4

Keywords

Navigation