Skip to main content
Log in

Artificial boundaries and formulations for the incompressible Navier–Stokes equations: applications to air and blood flows

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We deal with numerical simulations of incompressible Navier–Stokes equations in truncated domain. In this context, the formulation of these equations has to be selected carefully in order to guarantee that their associated artificial boundary conditions are relevant for the considered problem. In this paper, we review some of the formulations proposed in the literature, and their associated boundary conditions. Some numerical results linked to each formulation are also presented. We compare different schemes, giving successful computations as well as problematic ones, in order to better understand the difference between these schemes and their behaviours dealing with systems involving Neumann boundary conditions. We also review two stabilization methods which aim at suppressing the instabilities linked to these natural boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Baffico, L., Grandmont, C., Maury, B.: Multiscale modeling of the respiratory tract. Math. Models Methods Appl. Sci. 20(1), 59–93 (2010)

    Google Scholar 

  2. Bardos, C., Bercovier, M., Pironneau, O.: The vortex method with finite elements. Math. Comput. 36(153), 119–136 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barth, W.L., Carey, G.F.: On a boundary condition for pressure-driven laminar flow of incompressible fluids. Int. J. Numer. Methods Fluids 54(11), 1313–1325 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernard, J.M.: Time-dependent Stokes and Navier–Stokes problems with boundary conditions involving pressure, existence and regularity. Nonlinear Anal. Real World Appl. 4(5), 805–839 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Billy, F., Ribba, B., Saut, O., Morre-Trouilhet, H., Colin, T., Bresch, D., Boissel, J.-P., Grenier, E., Flandrois, J.-P.: A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260(4), 545–562 (2009)

    Article  MathSciNet  Google Scholar 

  6. Boyer, F., Fabrie, P.: Outflow boundary conditions for the incompressible non-homogeneous Navier–Stokes equations. Discret. Contin. Dyn. Syst. Ser. B 7(2), 219–250 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R–2), 129–151 (1974)

    MATH  MathSciNet  Google Scholar 

  8. Bruneau, C.-H.: Boundary conditions on artificial frontiers for incompressible and compressible Navier–Stokes equations. ESAIM Math. Model. Numer. Anal. 34(02), 303–314 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bruneau, C.-H., Fabrie, P.: New efficient boundary conditions for incompressible Navier–Stokes equations : a well-posedness result. ESAIM Math. Model. Numer. Anal. 30(7), 815–840 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Bègue, C., Conca, C., Murat, F., Pironneau, O.: À nouveau sur les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression. Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique 304(1), 23–28 (1987)

    MATH  Google Scholar 

  11. Bègue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986), vol. 181 of Pitman Res. Notes Math. Ser., pp. 179–264. Longman Sci. Tech., Harlow (1988)

  12. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  13. Clavica, F., Alastruey, J., Sherwin, S. J., Khir, A.W.: One-dimensional modelling of pulse wave propagation in human airway bifurcations in space-time variables. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 5482–5485 (2009)

  14. Colin, T., Iollo, A., Lombardi, D., Saut, O.: Prediction of the evolution of thyroidal lung nodules using a mathematical model. ERCIM News, Special issue “Computational Biology” (82) (2010)

  15. Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. New Ser. 20(2), 279–318 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Conca, C., Parés, C., Pironneau, O., Thiriet, M.: Navier–Stokes equations with imposed pressure and velocity fluxes. Inte. J. Numer. Methods Fluids 20(4), 267–287 (1995)

    Article  MATH  Google Scholar 

  17. Egloffe, A.-C.: Étude de quelques problèmes inverses pour le système de Stokes. Application aux poumons. Ph.D. thesis, Université Pierre et Marie Curie (2012)

  18. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, NY, USA (2005)

    Google Scholar 

  19. Ern, A., Guermond, J.-L.: Theory Pract. Finite Elem. Springer, New York (2004)

    Book  Google Scholar 

  20. Esmaily Moghadam, M., Bazilevs, Y., Hsia, T.-Y., Vignon-Clementel, I.E., Marsden, A.L.: A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Computat. Mech. 48(3), 277–291 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Esmaily Moghadam, M., Migliavacca, F., Vignon-Clementel, I.E., Hsia, T.-Y., Marsden, A.: Optimization of shunt placement for the norwood surgery using multi-domain modeling. J. Biomech. Eng. 134(5), 051002 (2012)

    Article  Google Scholar 

  22. Esmaily Moghadam, M., Vignon-Clementel, I.E., Figliola, R., Marsden, A.L.: A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244(0), 63–79 (2012)

    MathSciNet  Google Scholar 

  23. FELiScE.: INRIA forge project FELiScE: felisce.gforge.inria.fr (2013)

  24. Formaggia, L., Gerbeau, J.-F., Nobile, F., Quarteroni, A.: Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 40(1), 376–401 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Formaggia, L., Lamponi, D., Quarteroni, A.: One-dimensional models for blood flow in arteries. J. Eng. Math. 47(3–4), 251–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99(2–3), 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gemci, T., Ponyavin, V., Chen, Y., Chen, H., Collins, R.: Computational model of airflow in upper 17 generations of human respiratory tract. J. Biomech. 41(9), 2047–2054 (2008)

    Article  Google Scholar 

  28. Gengenbach, T., Heuveline, V., Krause, M. J.: Numerical simulation of the human lung: a two-scale approach. EMCL Preprint Series, 11 (2011)

  29. Grandmont, C., Maday, Y., Maury, B.: A multiscale/multimodel approach of the respiration tree. In: New trends in continuum mechanics, vol. 3 of Theta Ser. Adv. Math., pp. 147–157. Theta, Bucharest (2005)

  30. Grandmont, C., Maury, B., Soualah, A.: Multiscale modelling of the respiratory track: a theoretical framework. ESAIM Proc. 23, 10–29 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gravemeier, V., Comerford, A., Yoshihara, L., Ismail, M., Wall, W.A.: A novel formulation for Neumann inflow boundary conditions in biomechanics. Int. J. Numer. Methods Biomed. Eng. 28(5), 560–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23(1), 413–453 (1991)

    Article  MathSciNet  Google Scholar 

  33. Gresho, P.M.: Some current CFD issues relevant to the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 87(2), 201–252 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gresho, P.M., Sani, R.L.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1111–1145 (1987)

    Article  MATH  Google Scholar 

  35. Gresho, P. M., Sani, R.L.: Incompressible flow and the finite element method. In: Incompressible Flow and the Finite Element Method-Advection-Diffusion and Isothermal Laminar Flow. John Wiley and Sons (June 1998)

  36. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gunzberger, M.D.: Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press Inc., San Diego (1989)

  38. Halpern, L., Schatzman, M.: Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal. 20(2), 308–353 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hannasch, D., Neda, M.: On the accuracy of the viscous form in simulations of incompressible flow problems. Numer. Methods Partial Differ. Equ. 28(2), 523–541 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22(5), 325–352 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hughes, T.J.R., Wells, G.N.: Conservation properties for the galerkin and stabilised forms of the advection-diffusion and incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 194(9–11), 1141–1159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kim, H.J., Figueroa, C., Hughes, T.J.R., Jansen, K.E., Taylor, C.A.: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198(45–46), 3551–3566 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kuprat, A.P., Kabilan, S., Carson, J.P., Corley, R.A., Einstein, D.R.: A bidirectional coupling procedure applied to multiscale respiratory modeling. J. Comput. Phys. 244, 148–167 (2013)

    Article  MathSciNet  Google Scholar 

  44. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Gordon and Breach (1969)

  45. Ladyzhenskaya, O.A.: Mathematical analysis of Navier–Stokes equations for incompressible liquids. Annu. Rev. Fluid Mech. 7(1), 249–272 (1975)

    Article  Google Scholar 

  46. Leone, J.M., Gresho, P.M.: Finite element simulations of steady, two-dimensional, viscous incompressible flow over a step. J. Comput. Phys. 41(1), 167–191 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  47. Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’Hydrodynamique. Journal de Mathématiques Pures et Appliquées 12, 1–82 (1933)

    Google Scholar 

  48. Leray, J.: Essai sur les mouvements plans d’un fluide visqueux que limitent des parois. Journal de Mathématiques Pures et Appliquées 13, 331–418 (1934)

    Google Scholar 

  49. Ley, S., Mayer, D., Brook, B., van Beek, E., Heussel, C., Rinck, D., Hose, R., Markstaller, K., Kauczor, H.-U.: Radiological imaging as the basis for a simulation software of ventilation in the tracheo-bronchial tree. Eur. Radiol. 12(9), 2218–2228 (2002)

    Google Scholar 

  50. Limache, A.C., Sánchez, P.J., Dalcín, L.D., Idelsohn, S.R.: Objectivity tests for Navier–Stokes simulations: the revealing of non-physical solutions produced by Laplace formulations. Comput. Methods Appl. Mech. Eng. 197(49), 4180–4192 (2008)

    Article  MATH  Google Scholar 

  51. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (2002)

  52. Lions, J.-L., Prodi, G.: Un théorème d’existence et d’unicité dans les équations de Navier–Stokes en dimension 2. Comptes Rendus de l’Académie des Sciences de Paris Série I(248), 3519–3521 (1959)

    MathSciNet  Google Scholar 

  53. Lombardi, D., Colin, T., Iollo, A., Saut, O., Bonichon, F., Palussière, J.: Some models for the prediction of tumor growth: general framework and applications to metastases in the lung. In: Garbey, M. et al. (eds.) Computational Surgery and Dual Training. Springer, New York (2014)

  54. Malvè, M., Chandra, S., López-Villalobos, J.L., Finol, E.A., Ginel, A., Doblaré, M.: CFD analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea. Comput. Methods Biomech. Biomed. Eng. 16(2), 198–216 (2013)

    Google Scholar 

  55. B. Maury. The respiratory system in equations, vol. 7 of MS&A. Modeling, Simulation and Applications. Springer-Verlag Italia, Milan (2013)

  56. Maury, B., Meunier, N., Soualah, A., Vial, L.: Outlet dissipative conditions for air flow in the bronchial tree. In: CEMRACS 2004-Mathematics and Applications to Biology and Medicine, vol. 14 of ESAIM Proceedings, pp. 201–212. EDP Sci., Les Ulis (2005)

  57. Maz’ya, V., Rossmann, J.: Point estimates for green’s matrix to boundary value problems for second order elliptic systems in a polyhedral cone. J. Appl. Math. Mech. 82(5), 291–316 (2002)

    MATH  MathSciNet  Google Scholar 

  58. Moshkin, N.P., Yambangwai, D.: On numerical solution of the incompressible Navier–Stokes equations with static or total pressure specified on boundaries. Math. Probl. Eng. 2009(1), 1–26 (2009)

    Google Scholar 

  59. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numerische Mathematik 38(3), 309–332 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  60. Pironneau, O.: Boundary conditions on the pressure for the Stokes and the Navier–Stokes equations. Comptes Rendus de l’Académie des Sciences Série I Mathématiques 303(9), 403–406 (1986)

    MATH  MathSciNet  Google Scholar 

  61. Pironneau, O.: Finite Element Methods for Fluids. Wiley, London (1990)

    Google Scholar 

  62. Porpora, A., Zunino, P., Vergara, C., Piccinelli, M.: Numerical treatment of boundary conditions to replace lateral branches in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28(12), 1165–1183 (2012)

    Article  MathSciNet  Google Scholar 

  63. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  64. Roos, H.G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems. In: Bank, R., Graham, R.L., Stoer, J., Varga, R., Yserentant, H. (eds.) Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer-Verlag, Berlin (2008)

  65. Sani, R.L., Gresho, P.M.: Résumé and remarks on the open boundary condition minisymposium. Int. J. Numer. Methods Fluids 18(10), 983–1008 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  66. Sapoval, B.: Smaller is better—but not too small: A physical scale for the design of the mammalian pulmonary acinus. Proc. Natl. Acad. Sci. 99(16), 10411–10416 (2002)

    Article  Google Scholar 

  67. Soualah-Alila, A.: Modélisation mathématique et numérique du poumon humain. Ph.D. thesis, Université Paris Sud (2007)

  68. Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bulletin de la Société Mathématique de France 96, 115–152 (1968)

    MATH  MathSciNet  Google Scholar 

  69. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33(5), 377–385 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  70. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, vol. 2. American Mathematical Society, AMS Chelsea Publishing, Providence, RI (2001)

  71. Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95(2), 221–242 (1992)

    Article  MATH  Google Scholar 

  72. Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190(3–4), 411–430 (2000)

    Article  MATH  Google Scholar 

  73. Tu, J., Inthavong, K., Ahmadi, G.: Computational Fluid and Particle Dynamics in the Human Respiratory System, 1st edn. Springer, Dordrecht (2012)

    Google Scholar 

  74. Vergara, C.: Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. J. Sci. Comput. 46(1), 100–123 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  75. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32), 3776–3796 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  76. Wall, W.A., Wiechert, L., Comerford, A., Rausch, S.: Towards a comprehensive computational model for the respiratory system. Int. J. Numer. Methods Biomed. Eng. 26(7), 807–827 (2010)

    MATH  Google Scholar 

  77. Weibel, E.R.: Morphometry of the Human Lung. Springer-Verlag, NY, USA (1963)

    Book  Google Scholar 

Download references

Acknowledgments

The author wants to thank Céline Grandmont and Sébastien Martin for valuable discussions and for their very helpful feedbacks on the manuscript, and Bertrand Maury for his fruitful remarks. The present work has been partially supported by the Agence Nationale de la Recherche (ANR) through the projects ANR-11-TECS-006 (OxHelease) and ANR-08-JCJC-013-01 (M3RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine Fouchet-Incaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouchet-Incaux, J. Artificial boundaries and formulations for the incompressible Navier–Stokes equations: applications to air and blood flows. SeMA 64, 1–40 (2014). https://doi.org/10.1007/s40324-014-0012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-014-0012-y

Keywords

Mathematics Subject Classification

Navigation