Skip to main content
Log in

Bifurcation features, chaos, and coherent structures for one-dimensional nonlinear electrical transmission line

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper intends to investigate the bifurcation features with chaos and nonlinear coherent structures for the voltage wave propagation by developing a Hamiltonian dynamical system from the leading equations for the nonlinear electrical transmission lines (NLETLs). The effort is confirmed by the novel soliton, and other solutions for one-dimensional NLETL by considering the cubic–quintic–septic nonlinear medium. Using the extended simplest equation method (ESEM), various types of wave (e.g., bright/dark soliton and shocks, singular soliton, and periodic) solutions are determined. Subsequently, the dynamical theory is employed for analyzing the stability of NLETL. It is observed that the traveling wave reference velocity is incorporated various types of solitary waves that act similarly to the bifurcation parameters. The critical velocity of the traveling waves is also generated a pitchfork bifurcation. The existence of chaos in NLETL is justified by applying the Lyapunov spectrum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Book  MATH  Google Scholar 

  • Afshari E et al (2006) Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines. J Appl Phys 99:054901

    Article  Google Scholar 

  • Afshari E, Hajimiri A (2005) Nonlinear transmission lines for pulse shaping in silicon. IEEE J Solid-State Circ 40(3):744–752

    Article  Google Scholar 

  • Afshari E, Bhat HS, Hajimiri A, Marsden JE (2006) Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines. J Appl Phys 99(5):054901

    Article  Google Scholar 

  • Atai J, Malomed B (2001) A historical narrative of study of fiber grating solitons. Phys Lett A 284:247

    Article  MathSciNet  MATH  Google Scholar 

  • Baier G, Sahle H (1995) Design of hyperchaotic flows. Phys Rev E 51:R2712–R2714

    Article  Google Scholar 

  • Bullough RK, Caudrey PJ (1980) Solitons. Springer, Berlin, New York

    Book  MATH  Google Scholar 

  • Case MG (1993) Nonlinear Transmission Lines for Picosecond Pulse, Impulse and Millimeter-Wave Harmonic Generation. Ph.D. dissertation, Univ. of California, Santa Barbara

  • Chen Z-M, Djidjeli K, Price WG (2006) Computing Lyapunov exponents based on the solution expression of the variational system. Appl Math Comput 174:982–996

    MathSciNet  MATH  Google Scholar 

  • Corless RM (1994) What good are numerical simulations of chaotic dynamical systems? Comput Math Appl 46:107–121

    Article  MathSciNet  MATH  Google Scholar 

  • Corti L, De Menna L, Miano G, Verolino L (1994) Chaotic dynamics in an infinite-dimensional electromagnetic system. IEEE Trans Circ Syst I Fund Theory Appl 41:730–736

    Article  MathSciNet  MATH  Google Scholar 

  • Drazin PG, Johnson RS (1989) Solitons: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • El-Sheikh MMA, Ahmed HM, Arnous AH, Rabie WB (2019) Optical solitons and other solutions in birefringent fibers with Biswas-Arshed equation by Jacobi’s elliptic function approach. Optik 202:163546

    Article  Google Scholar 

  • El-Sheikh MMA, Ahmed HM, Arnous AH, Rabie WB (2020) Optical solitons with differential group delay for coupled Kundu-Eckhaus equation using extended simplest equation approach. Optik 208:164051

    Article  Google Scholar 

  • Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. Stat Phys 19:25–52

    Article  MathSciNet  MATH  Google Scholar 

  • Gilmore R, Lefranc M (2011) The topology of chaos alice in stretch and Squeezeland. Wiley, Amsterdam

    Book  MATH  Google Scholar 

  • Greiner W (2010) Classical mechanics: systems of particles and hamiltonian dynamics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hafez MG (2019) Nonlinear Schamel Korteweg-de Vries-Burgers equation to report ion acoustic waves in the relativistic plasmas. IEEE Trans Plasma Sci 47:5314

    Article  Google Scholar 

  • Hafez MG (2019) Face to face collisions of ion acoustic multi-solitons and phase shifts in a dense plasma. Br J Phys 49:221

    Article  Google Scholar 

  • Hafez MG (2020) Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas. Astrophys Space Sci 365:78

    Article  MathSciNet  Google Scholar 

  • Hafez MG, Talukder MR, Sakthivel R (2016) Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions. Indian J Phys 90:603

    Article  Google Scholar 

  • Hafez MG, Iqbal SA, Akther S, Uddin MF (2019) Oblique plane waves with bifurcation behaviors and chaotic motion for resonant nonlinear Schrodinger equations having fractional temporal evolution. Results Phys 15:102778

    Article  Google Scholar 

  • Hafez MG, Singh S, Sakthivel R, Ahmed SF (2020) Dust ion acoustic multi-shock wave excitations in the weakly relativistic plasmas with nonthermal nonextensive electrons and positrons. AIP Adv 10:065234

    Article  Google Scholar 

  • Infeld E, Rowlands G (1990) Nonlinear waves, solitons and chaos. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Iqbal SA, Hafez MG, Karim SAA (2020) Bifurcation analysis with chaotic motion of oblique plane wave for describing a discrete nonlinear electrical transmission line with conformable derivative. Results Phys 18:103309

    Article  Google Scholar 

  • Kuznetsov YA (2004) Elements of applied bifurcation theory, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Malwe BH, Betchewe G, Doka SY, Kofane TC (2016) Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn 84:171–177

    Article  MathSciNet  MATH  Google Scholar 

  • Mostafa SI (2009) Analytical study for the ability of nonlinear transmission lines to generate solitons. Chaos Solit Fract 39(5):2125–2132

    Article  MathSciNet  Google Scholar 

  • Munoz-Pacheco JM, del Carmen L, Gómez-Pavón OG, Félix-Beltrán AL-R (2013) Determining the Lyapunov spectrum of continuous-time 1D and 2D multiscroll chaotic oscillators via the solution of m-PWL variational equations. Abstr Appl Anal 2013:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Olver PJ, Sattinger DH (1990) Solitons in physics, mathematics, and nonlinear optics. Springer, New York

    Book  MATH  Google Scholar 

  • Ozawa K, Isogai K, Nakano H, Okazaki H (2021) Formal Chaos existing conditions on a transmission line circuit with a piecewise linear resistor. Appl Sci 11:9672

    Article  Google Scholar 

  • Peter SI (1935) Differential equations, Nonlinear. Title, III. Series. QA372.J58 1999 515

  • Ramasubramanian K, Sriram MS (2000) A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139:72–86

    Article  MathSciNet  MATH  Google Scholar 

  • Ramirez-Mireles F, Win MZ, Scholtz RA (1997) Signal selection for the indoor wireless impulse radio channel. 1997 IEEE 47th Vehicular Technology Conference. Technol Motion 3:2243–2247

    Google Scholar 

  • Remoissenet M (1994) Waves called solitons: concepts and experiments. Springer, Berlin

    Book  MATH  Google Scholar 

  • Remoissenet M (1999) Waves called solitons, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Rodwell MJW, Kamegawa M, Yu R, Case M, Carman E, Giboney K (1991) GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling. IEEE Trans Microwave Theo Tech 39:1194–1204

    Article  Google Scholar 

  • Sakai J, Kawata T (1977) Parametric instabilities in the nonlinear transmission line. J Phys Soc Jpn 15:2050–2055

    Article  Google Scholar 

  • Seadawy AR, Ahmed HM, Rabie WB, Biswas A (2021) Chirp-free optical solitons in fiber bragg gratings with dispersive reflectivity having polynomial law of nonlinearity. Optik 225:165681

    Article  Google Scholar 

  • Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurcat Chaos 21:2391–2394

    Article  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Perseus Books Publishing, Reading, Massachusetts

    MATH  Google Scholar 

  • Tailor JR (1992) Optical solitons-theory and experiment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tavakol ME, Ng EYK, Lucas C, Sadri S, Ataei M (2012) Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions. Infrared Phys Technol 55:345–352

    Article  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Physica 16D:285–317

  • Zeraoulia E, Sprott (2010) 2-D quadratic maps and 3-D ODE systems. World Scientfic, Singapore

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Communicated by Valeria Neves Domingos Cavalcanti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S.A., Hafez, M.G. & Uddin, M.F. Bifurcation features, chaos, and coherent structures for one-dimensional nonlinear electrical transmission line. Comp. Appl. Math. 41, 50 (2022). https://doi.org/10.1007/s40314-021-01753-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01753-7

Keywords

Mathematics Subject Classification

Navigation