Skip to main content
Log in

Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

A Correction to this article was published on 08 December 2017

This article has been updated

Abstract

The theoretical and numerical studies have been investigated on nonlinear propagation of weakly relativistic ion acoustic solitary waves in an unmagnetized plasma system consisting of nonextensive electrons, positrons and relativistic thermal ions. To study the characteristics of nonlinear propagation of the three-component plasma system, the reductive perturbation technique has been applied to derive the Korteweg–de Vries equation, which divulges the soliton-like solitary wave solution. The ansatz method is employed to carry out the integration of this equation. The effects of nonextensive electrons, positrons and relativistic thermal ions on phase velocity, amplitude and width of soliton and electrostatic nonlinear propagation of weakly relativistic ion acoustic solitary waves have been discussed taking different plasma parameters into consideration. The obtained results can be useful in understanding the features of small amplitude localized relativistic ion acoustic solitary waves in an unmagnetized three-component plasma system for hard thermal photon production with relativistic heavy ions collision in quark–gluon plasma as well as for astrophysical plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 08 December 2017

    We wish to point out a mistake in the paper [Indian J Phys 90, 603 (2016)], which partially changes a few results presented.

  • 08 December 2017

    We wish to point out a mistake in the paper [Indian J Phys 90, 603 (2016)], which partially changes a few results presented.

  • 08 December 2017

    We wish to point out a mistake in the paper [Indian J Phys 90, 603 (2016)], which partially changes a few results presented.

  • 08 December 2017

    We wish to point out a mistake in the paper [Indian J Phys 90, 603 (2016)], which partially changes a few results presented.

References

  1. F C Michel Theory of Neutron Star Magnetosphere (Chicago: Chicago University Press) (1991)

  2. F C Michel Rev. Mod. Phys. 54 1 (1982)

    Article  ADS  Google Scholar 

  3. H R Miller and P J Wiita Active Galactic Nuclei (Berlin: Springer) p 202 (1987)

  4. M L Burns Positron-Electron Pairs in Astrophysics (Melville NY: American Institute of Physics) (1983)

  5. P K Shukla, N N Rao, M Y Yu and N L Tsintsadze Phys. Rep. 138 1 (1986)

    Article  Google Scholar 

  6. L O Silva, R Bingham, J M Dawson, J T Mendona and P K Shukla Phys. Rev. Lett. 83 2703 (1999)

    Article  ADS  Google Scholar 

  7. F D Steffen and M H Thoma Phys. Lett. B 510 98 (2001)

    Article  ADS  Google Scholar 

  8. A A Mamun and P K Shukla Phy. Lett. A 374 472 (2010)

    Article  ADS  Google Scholar 

  9. A A Mamun and P K Shukla Phy. Plasmas 17 104504 (2010)

    Article  ADS  Google Scholar 

  10. S Mahmood and N Akhtar Eur. Phys. J. D 49 217 (2008)

    Article  ADS  Google Scholar 

  11. H Saleem, Q Haque and J Vranges Phys. Rev. E 67 057402 (2003)

    Google Scholar 

  12. H Hasegawa and Y Ohsawa J. Phys. Soc. Jpn. 73 1764 (2004)

    Article  ADS  Google Scholar 

  13. M Salahuddin, H Saleem and M. Saddiq Phys. Rev. E 66 036407 (2002)

    Article  ADS  Google Scholar 

  14. M S Zobaer, N Roy and A A Mamun Astrophys. Space Sci. 350 231(2014)

    Article  ADS  Google Scholar 

  15. H Saleem and S Mahmood Phys. Plasmas 10 2612 (2003)

    Article  ADS  Google Scholar 

  16. P K Shukla, J T Mendonca and R Bingham Phys. Scr. T 113 133 (2004)

    Google Scholar 

  17. N S Saini, B S Chahal and A S Bains Astrophys. Space Sci. 347 129 (2013)

    Article  ADS  Google Scholar 

  18. C Grabbe J. Geophys. Res. 94 17299 (1989)

    Article  ADS  Google Scholar 

  19. B Shen and J Meyer-ter-Vehn Phys. Rev. E 65 016405 (2001)

    Article  ADS  Google Scholar 

  20. E P Liang, S C Wilks and M Tabak Phys. Rev. Lett. 81 4887 (1998)

    Article  ADS  Google Scholar 

  21. A Shah, Q Haque and S Mahmood Astrophys. Space Sci. 335 529 (2011)

    Article  ADS  Google Scholar 

  22. T S Gill, A S Bains and N S Saini Can. J. Phys. 87 861(2009)

    ADS  Google Scholar 

  23. M Tribeche and L Djebarni Phys. Plasmas 17 124502 (2010)

    Article  ADS  Google Scholar 

  24. R Saeed, A Shah and M Noaman-ul-Haq Phys. Plasmas 17 102301 (2010)

    Article  ADS  Google Scholar 

  25. C Tsallis Stat. J. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  26. A Lavagno and D Pigato Euro. Phys. J. A 47 52 (2011)

    Article  ADS  Google Scholar 

  27. A R Plastino and A Plastino Phys. Lett. A 174 384 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. G Gervino, A Lavagno and D. Pigato Central Euro. J. Phys. 10 594 (2012)

    ADS  Google Scholar 

  29. C Feron and J Hjorth Phys. Rev. E 77 022106 (2008)

    Article  ADS  Google Scholar 

  30. H R Pakzad Astrophys. Space Sci. 331 169 (2011)

    Article  ADS  Google Scholar 

  31. S Ashraf, S Yasmin, M Asaduzzaman and A A Mamun Astrophys. Space Sci. 344 145 (2013)

    Article  ADS  Google Scholar 

  32. H Alinejad Astrophys. Space Sci. 345 85 (2013)

    Article  ADS  Google Scholar 

  33. R Silva, A Plastino and J Lima Phys. Lett. A 249 401 (1998)

    Article  ADS  Google Scholar 

  34. N S Saini and Shalini Astrophys. Space Sci. 346 155 (2013)

    Article  ADS  Google Scholar 

  35. P Eslami, M Mottaghizadeh and H R Pakzad Phys. Plasmas 18 102313 (2011)

    Article  ADS  Google Scholar 

  36. M Ferdousi, S Yasmin, S Ashraf and A A Mamun Chin. Phys. Lett. 32 015201 (2015)

    Google Scholar 

  37. T S Gill, A Singh, H Kaur, N S Saini and P Bala Phys. Lett. A. 361 364 (2007)

    Article  ADS  Google Scholar 

  38. T Taniuti and N Yajima J. Math. Phys. 10 1369 (1969)

    Article  ADS  Google Scholar 

  39. M Mehdipoor and A Neirameh Astrophys. Space Sci. 337 269 (2012)

    Article  ADS  Google Scholar 

  40. H Triki and A M Wazwaz Phys. Lett. A. 373 2162 (2009)

    Article  ADS  Google Scholar 

  41. A Biswas Appl. Math. Lett. 22 208 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Hafez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, M.G., Talukder, M.R. & Sakthivel, R. Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions. Indian J Phys 90, 603–611 (2016). https://doi.org/10.1007/s12648-015-0782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0782-9

Keywords

PACS Nos.

Navigation