Skip to main content

Advertisement

Log in

Validation of a fractional model for erythrocyte sedimentation rate

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present the validation of a recent fractional mathematical model for erythrocyte sedimentation proposed by Sousa et al. (AIMS Math 2(4):692–705, 2017). The model uses a Caputo fractional derivative to build a time-fractional diffusion equation suitable to predict blood sedimentation rates. This validation was carried out by means of erythrocyte sedimentation tests in laboratory. Data on sedimentation rates (percentages) were analyzed and compared with the analytical solution of the time-fractional diffusion equation. The behavior of the analytical solution related to each blood sample sedimentation data was described and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarado DAG, Galeano CH, Mantilla JM (2012) Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: first example. Appl Math Model 36:5029–5045

    Article  MathSciNet  MATH  Google Scholar 

  • Bedell SE, Bush BT (1985) Erythrocyte sedimentation rate. From folklore to facts. Am J Med 78(6):1001–1009

    Article  Google Scholar 

  • Biernacki E (1897) Die spontane blutsedimentirung als eine wissenschaftliche und praktischklinische untersuchungsmethode? DMW-Deutsche Medizinische Wochenschrift 23(48):769–772 Please check the journal title in reference Biernacki (1897a)

    Article  Google Scholar 

  • Biernacki E (1897) Samoistna sedymentacja krwi, jako naukowa i praktyczno-kliniczna metoda badania (Spontaneous sedimentation of red blood cells in clinical practice). Gazeta Lekarska 36(48):962–968

    Google Scholar 

  • Bottiger LE, Svedberg CA (1967) Normal erythrocyte sedimentation rate and age. Br Med J 2(5544):85

    Article  Google Scholar 

  • Bratus A, Samokhin I, Yegorov I, Yurchenko D (2017) Maximization of viability time in a mathematical model of cancer therapy. Math Biosci 294:110–119

    Article  MathSciNet  MATH  Google Scholar 

  • Brigden ML (1999) Clinical utility of the erythrocyte sedimentation rate. Am Fam Physician 60(5):1443–1450

    Google Scholar 

  • Bunting H (1939) Sedimentation rates of sickled and non-sickled cells from patients with sickle cell anemia. Am J Med Sci 198(2):191–192

    Article  Google Scholar 

  • Capelas de Oliveira E, Mainardi F, Vaz J (2011) Models based on Mittag–Leffler functions for anomalous relaxation in dielectrics. Eur Phys J Spec Top 193(1):161–171

    Article  Google Scholar 

  • Capelas de Oliveira E, Mainardi F, Vaz J (2014) Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49(9):2049–2060

    Article  MathSciNet  MATH  Google Scholar 

  • Cha CH, Park CJ, Cha YJ, Kim HK, Kim DH, Bae JH, Jung JS, Jang S, Chi HS, Lee DS (2009) Erythrocyte sedimentation rate measurements by test 1 better reflect inflammation than do those by the Westergren method in patients with malignancy, autoimmune disease, or infection. Am J Clin Pathol 131(2):189–194

    Article  Google Scholar 

  • Chattopadhyay J, Sarkar RR, Abdllaoui AEL (2002) A delay differential equation model on harmful algal blooms in the presence of toxic substances. Math Med Biol 19(2):137–161

    Article  MATH  Google Scholar 

  • Cheung R, Sillence DO, Tchan MC (2012) Homocysteine and erythrocyte sedimentation rate correlate with cerebrovascular disease in fabry disease. In: JIMD Rep. pp 101–105

  • Choi Y, Park B, Kim K, Jeong BC, Seo SI, Jeon SS, Choi HY, Lee JE, Lee HM (2013) Erythrocyte sedimentation rate and anaemia are independent predictors of survival in patients with clear cell renal cell carcinoma. Br J Cancer 108(2):387

    Article  Google Scholar 

  • Chu KC, Kramer BS, Smart CR (1991) Analysis of the role of cancer prevention and control measures in reducing cancer mortality. J Natl Cancer Inst 83:1636–1643

    Article  Google Scholar 

  • Collares GB, Vidigal PG (2014) Recomendações para o uso da velocidade de hemossedimentação. Rev Med Minas Gerais 14(1):52–57

    Google Scholar 

  • Costa FS, Soares JCS, Plata ARG, de Oliveira EC (2017) On the fractional Harry Dym equation. Comput Appl Math. https://doi.org/10.1007/s40314-017-0484-3

  • Costa FS, Pereira MRA (2017) Travelling waves in space-fractional nonlinear diffusion with linear convection. J Appl Math Phys 5(02):462–468

    Article  Google Scholar 

  • Costa FS, Marão JAPF, Soares JCA, Capelas de Oliveira E (2015) Similarity solution to fractional nonlinear space-time diffusion-wave equation. J Math Phys 56(3):033507

    Article  MathSciNet  MATH  Google Scholar 

  • Ding Y, Ye H (2009) A fractional-order differential equation model of HIV infection of CD4+ t-cells. Math Comput Model 50(3):386–392

    Article  MathSciNet  MATH  Google Scholar 

  • Fahraeus R (1921) The suspension-stability of blood. Acta Med Scand 55:1–228

    Google Scholar 

  • Fahraeus R (1929) The suspension stability of the blood. Physiol Rev Am Physiol Soc 9(2):241–274

    Google Scholar 

  • Fahraeus R (1958) The influence of the rouleaux formation of the erythrocytes on the rheology of the blood. Acta Med Scand 161(2):151

    Article  Google Scholar 

  • Ghanem E, Antoci V, Pulido L, Joshi A, Hozack W, Parvizi J (2009) The use of receiver operating characteristics analysis in determining erythrocyte sedimentation rate and c-reactive protein levels in diagnosing periprosthetic infection prior to revision total hip arthroplasty. Int J Infect Dis 13(6):e444–e449

    Article  Google Scholar 

  • Glass R (1971) Factitiously low esr with chronic lymphocytic leukemia. N Engl J Med 285(16):921

    Google Scholar 

  • Gorenflo R, Kilbas AA, Mainardi F, Rogosin S (2014) Mittag–Leffler functions. Related topics and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Gourley SA, Kuang Y, Nagy JD (2008) Dynamics of a delay differential equation model of hepatitis B virus infection. J Biol Dyn 2(2):140–153

    Article  MathSciNet  MATH  Google Scholar 

  • Grace CS, Goldrick RB (1968) Fibrinolysis and body build: interrelationships between blood fibrinolysis, body composition and parameters of lipid and carbohydrate metabolism. J Atheroscler Res 8(4):705–719

    Article  Google Scholar 

  • Greidanus NV, Masri BA, Garbuz DS, Wilson SD, McAlinden MG, Xu M, Duncan CP (2007) Use of erythrocyte sedimentation rate and c-reactive protein level to diagnose infection before revision total knee arthroplasty: a prospective evaluation. J Bone Jt Surg Am 89(7):1409–1416

    Google Scholar 

  • Hameed MA, Waqas S (2006) Physiological basis and clinical utility of erythrocyte sedimentation rate. Cont Med Edu 22(2):214–218

    Google Scholar 

  • Harris PA, Garra R (2017) Nonlinear heat conduction equations with memory: physical meaning and analytical results. J Math Phys 58:063501

    Article  MathSciNet  MATH  Google Scholar 

  • Hashemi R, Majidi A, Motamed H, Amini A, Najari F, Tabatabaey A (2015) Erythrocyte sedimentation rate measurement using as a rapid alternative to the Westergren method. Emergency 3(2):50

    Google Scholar 

  • Hauser G, Tkalcic M, Pletikosic S, Grabar N, Stimac D (2012) Erythrocyte sedimentation rate-possible role in determining the existence of the low grade inflammation in irritable bowel syndrome patients. Med Hypotheses 78(6):818–820

    Article  Google Scholar 

  • He X-F (1990) Fractional dimensionality and fractional derivative spectra of interband optical transitions. Phys Rev B 42:751–756

    Google Scholar 

  • Hutchinson RM, Clay CM, Simpson MR, Wood JK (1978) Lowered erythrocyte-sedimentation rate with sodium valproate. Lancet 312(8103):1309

    Article  Google Scholar 

  • International Committee for Standardization in Haematology (1973) Reference method for the erythrocytesedimentation rate (ESR) test on human blood. Br J Haematol 24(1):671–673

    Google Scholar 

  • International Committee for Standardization in Haematology (1993) Recommendations for measurement of erythrocyte sedimentation rate. J Clin Pathol 46:198–203

    Article  Google Scholar 

  • Jandl JH (1996) Phystology of red blood cells. In: Jandl JH (ed) Textbook of hematolgy, 2d edn. Little, Brown, New York

    Google Scholar 

  • Khanday MA, Rafiq A, Nazir K (2017) Mathematical models for drug diffusion through the compartments of blood and tissue medium. Alex J Med 53:245–249

    Article  Google Scholar 

  • Kucharz EJ (1987) Edmund Biernacki and erythrocyte sedimentation rate. J Lab Clin Med 329:696

    Google Scholar 

  • Kucharz E (1988) The forgotten contribution of Dr. Edmund Faustyn Biernacki (1866–1911) to the discovery of the erythrocyte sedimentation rate. J Lab Clin Med 112(2):279–280

    MathSciNet  Google Scholar 

  • Langlands TAM, Henry BI, Wearne SL (2009) Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J Math Biol 59(6):761

    Article  MathSciNet  MATH  Google Scholar 

  • Lenzi EK, Lenzi MK, Evangelista LR, Malacarne LC, Mendes RS (2009) Solutions for a fractional nonlinear diffusion equation with external force and absorbent term. J Stat Mech Theory Exp 2009(02):P02048

    Article  Google Scholar 

  • Matveev AS, Savkin AV (2002) Application of optimal control theory to analysis of cancer chemotherapy regimens. Syst Control Lett 46:311–321

    Article  MathSciNet  MATH  Google Scholar 

  • McPherson RA, Pincus MR (2017) Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, United States

  • Mishra BK, Saini D (2007) Mathematical models on computer viruses. Appl Math Comput 187(2):929–936

    MathSciNet  MATH  Google Scholar 

  • Mommer MS, Lebiedz D (2009) Modeling subdiffusion using reaction diffusion systems. SIAM J Appl Math 70:112–132

    Article  MathSciNet  MATH  Google Scholar 

  • Murata T, Secomb TW (1988) Effects of shear rate on rouleaux formation in simple shear flow. Biorheology 25(1–2):113–122

    Article  Google Scholar 

  • Oke SI, Matadi MB, Xulu SS (2018) Optimal control analysis of a mathematical model for breast cancer. Math Comput Appl 23:21

    Google Scholar 

  • Olshaker JS, Jerrard DA (1997) Pregnancy and the erythrocyte sedimentation rate. J Emerg Med 108(6):869–874

    Article  Google Scholar 

  • Pahnehkolaei SMA, Alfi A, Machado JT (2017) Dynamic stability analysis of fractional order leaky integrator echo state neural networks. Commun Nonlinear Sci Numer Simul 47:328–337

    Article  MathSciNet  Google Scholar 

  • Pasulka PS, Bistrian BR, Blackburn GL (1985) Obesity and erythrocyte sedimentation rates. Ann Intern Med 103(2):304–304

    Article  Google Scholar 

  • Pinto CMA, Carvalho ARM (2017) A latency fractional order model for HIV dynamics. J Comput Appl Math 312:240–256

    Article  MathSciNet  MATH  Google Scholar 

  • Pinto CMA, Machado JAT (2013) Fractional model for malaria transmission under control strategies. Comput Math Appl 66:908–916

    Article  MathSciNet  Google Scholar 

  • Samanta GP, Aíza RG, Sharma S (2017) Analysis of a mathematical model of periodically pulsed chemotherapy treatment. Int J Dyn Control 5:842–857

    Article  MathSciNet  Google Scholar 

  • Sharma GC, Jain M, Saral RN (1996) A mathematical model for concentration of blood affecting erythrocyte sedimentation. Comput Biol Med 26:1–7

    Article  Google Scholar 

  • Shearn MA, Kang IY (1986) Effect of age and sex on the erythrocyte sedimentation rate. J Rheumatol 13(2):297–298

    Google Scholar 

  • Shusterman N, Kimmel PL, Kiechle FL, Williams S, Morrison G, Singer I (1985) Factors influencing erythrocyte sedimentation in patients with chronic renal failure. Arch Intern Med 145(10):1796–1799

    Article  Google Scholar 

  • Shusterman N, Morrison G, Singer I, Kimmel P, Kiechle F (1986) The erythrocyte sedimentation rate and chronic renal failure. Ann Intern Med 105(5):801–801

    Article  Google Scholar 

  • Solberg BI, Olson RJ (2014) Clinical utility of the erythrocyte sedimentation rate: a case study. Clin Lab Sci 27(2):72

    Google Scholar 

  • Sousa JVC (2018) Time-fractional diffusion equation (Erythrocyte sedimentation rate), (in Portuguese) Ph.D. thesis, Imecc-Unicamp, Campinas

  • Sousa JVC, de Oliveira E Capelas (2018b) On a new operator in fractional calculus and applications. arXiv:1710.03712

  • Sousa JVC, de Oliveira EC (2017) Mittag–Leffler functions and the truncated \(\cal{V}\)-fractional derivative. Mediterr J Math 16(6):244

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2018c) Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput Appl Math. https://doi.org/10.1007/s40314-018-0639-x

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2018a) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    MathSciNet  Google Scholar 

  • Sousa JVC, de Oliveira EC, Magna LA (2017) Fractional calculus and the ESR test. AIMS Math 2(4):692–705

    Article  Google Scholar 

  • Stojan G, Fang H, Magder L, Petri M (2013) Erythrocyte sedimentation rate is a predictor of renal and overall sle disease activity. Lupus 22(8):827–834

    Article  Google Scholar 

  • Talstad I, Scheie P, Dalen H, Roli J (1983) Influence of plasma proteins on erythrocyte morphology and sedimentation. Scand Haematol 31(5):478–484

    Article  Google Scholar 

  • Tamhane A, Redden DT, McGwin G, Brown EE, Westfall AO, Reynolds RJ, Hughes LB, Conn DL, Callahan LF, Jonas BL (2013) Comparison of the disease activity score using erythrocyte sedimentation rate and c-reactive protein in African Americans with rheumatoid arthritis. J Rheumatol 40(11):1812–1822

    Article  Google Scholar 

  • Tannenbaum AR, Georgiou T, Deasy J, Norton L (2018) Control and the analysis of cancer growth models. bioRxiv. https://doi.org/10.1101/244301

  • Tian C (2015) Turing pattern formation in a semiarid vegetation model with fractional-in-space diffusion. Bull Math Biol 77(11):2072–2085

    Article  MathSciNet  MATH  Google Scholar 

  • Vaidya VG, Alexandro FJ (1982) Evaluation of some mathematical models for tumor growth. Int J Biomed Comput 13(1):19–35

    Article  MathSciNet  Google Scholar 

  • Van den Broek N, Letsky E (2001) Pregnancy and the erythrocyte sedimentation rate. Br J Obstet Gynaecol 108(11):1164–1167

    Article  Google Scholar 

  • Varalta N, Gomes AV, Camargo RF (2014) A prelude to the fractional calculus applied to tumor dynamic. TEMA (São Carlos) 15(2):211–221

    MathSciNet  Google Scholar 

  • Vargas-De-León C (2015) Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun Nonlinear Sci Numer Simul 24:75–85

    Article  MathSciNet  Google Scholar 

  • Villasana M, Radunskaya A (2003) A delay differential equation model for tumor growth. J Math Biol 47(3):270–294

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Fergola P, Lombardo S, Mulone G (2006) Mathematical models of innovation diffusion with stage structure. Appl Math Model 30:129–146

    Article  MATH  Google Scholar 

  • Warner DM, George CRP (1991) Erythrocyte sedimentation rate and related factors in end-stage renal failure. Nephron 57(2):248–248

    Article  Google Scholar 

  • Westergren A (1921) Studies of the suspension stability of the blood in pulmonary tuberculosis. Acta Med Scand 54(1):247–282

    Article  Google Scholar 

  • Westergren A (1926) The technique of the red cell sedimentation reaction. Am Rev Tuberc 14:94–101

    Google Scholar 

  • Whelan J, Huang CR, Copley AL (1971) Concentration profiles in erythrocyte sedimentation in human whole blood. J Biorheol 7(4):205–212

    Article  Google Scholar 

  • Wojtak W, Silva CJ, Torres DFM (2018) Uniform asymptotic stability of a fractional tuberculosis model. Math Model Nat Phenom 13:9

    Article  MathSciNet  Google Scholar 

  • Zauber NP, Zauber AG (1987) Hematologic data of healthy very old people. JAMA 257(16):2181–2184

    Article  Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2008) Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech 41(1):47–55

    Article  Google Scholar 

  • Zubik-Kowal B (2018) An algorithm for partial functional differential equations modeling tumor growth. Appl Math Comput 321:85–92

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for the suggestions and corrections that have improved the paper and making it more readable. We would like to thank Dr. J. Emilio Maiorino for several suggestions and comments that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

Communicated by Vasily E. Tarasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da C. Sousa, J.V., dos Santos, M.N.N., Magna, L.A. et al. Validation of a fractional model for erythrocyte sedimentation rate. Comp. Appl. Math. 37, 6903–6919 (2018). https://doi.org/10.1007/s40314-018-0717-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0717-0

Keywords

Mathematics Subject Classification

Navigation