Advertisement

Computational and Applied Mathematics

, Volume 37, Issue 5, pp 6903–6919 | Cite as

Validation of a fractional model for erythrocyte sedimentation rate

  • J. Vanterler da C. SousaEmail author
  • Magun N. N. dos Santos
  • L. A. Magna
  • E. Capelas de Oliveira
Article

Abstract

We present the validation of a recent fractional mathematical model for erythrocyte sedimentation proposed by Sousa et al. (AIMS Math 2(4):692–705, 2017). The model uses a Caputo fractional derivative to build a time-fractional diffusion equation suitable to predict blood sedimentation rates. This validation was carried out by means of erythrocyte sedimentation tests in laboratory. Data on sedimentation rates (percentages) were analyzed and compared with the analytical solution of the time-fractional diffusion equation. The behavior of the analytical solution related to each blood sample sedimentation data was described and analyzed.

Keywords

Clinical laboratory tests Erythrocyte sedimentation rate Fractional calculus Time-fractional diffusion equation 

Mathematics Subject Classification

26A06 26A33 33RXX 34A30 35KXX 92BXX 92DXX 

Notes

Acknowledgements

We would like to thank the referees for the suggestions and corrections that have improved the paper and making it more readable. We would like to thank Dr. J. Emilio Maiorino for several suggestions and comments that helped improve the paper.

References

  1. Alvarado DAG, Galeano CH, Mantilla JM (2012) Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: first example. Appl Math Model 36:5029–5045MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bedell SE, Bush BT (1985) Erythrocyte sedimentation rate. From folklore to facts. Am J Med 78(6):1001–1009CrossRefGoogle Scholar
  3. Biernacki E (1897) Die spontane blutsedimentirung als eine wissenschaftliche und praktischklinische untersuchungsmethode? DMW-Deutsche Medizinische Wochenschrift 23(48):769–772 Please check the journal title in reference Biernacki (1897a)CrossRefGoogle Scholar
  4. Biernacki E (1897) Samoistna sedymentacja krwi, jako naukowa i praktyczno-kliniczna metoda badania (Spontaneous sedimentation of red blood cells in clinical practice). Gazeta Lekarska 36(48):962–968Google Scholar
  5. Bottiger LE, Svedberg CA (1967) Normal erythrocyte sedimentation rate and age. Br Med J 2(5544):85CrossRefGoogle Scholar
  6. Bratus A, Samokhin I, Yegorov I, Yurchenko D (2017) Maximization of viability time in a mathematical model of cancer therapy. Math Biosci 294:110–119MathSciNetzbMATHCrossRefGoogle Scholar
  7. Brigden ML (1999) Clinical utility of the erythrocyte sedimentation rate. Am Fam Physician 60(5):1443–1450Google Scholar
  8. Bunting H (1939) Sedimentation rates of sickled and non-sickled cells from patients with sickle cell anemia. Am J Med Sci 198(2):191–192CrossRefGoogle Scholar
  9. Capelas de Oliveira E, Mainardi F, Vaz J (2011) Models based on Mittag–Leffler functions for anomalous relaxation in dielectrics. Eur Phys J Spec Top 193(1):161–171CrossRefGoogle Scholar
  10. Capelas de Oliveira E, Mainardi F, Vaz J (2014) Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49(9):2049–2060MathSciNetzbMATHCrossRefGoogle Scholar
  11. Cha CH, Park CJ, Cha YJ, Kim HK, Kim DH, Bae JH, Jung JS, Jang S, Chi HS, Lee DS (2009) Erythrocyte sedimentation rate measurements by test 1 better reflect inflammation than do those by the Westergren method in patients with malignancy, autoimmune disease, or infection. Am J Clin Pathol 131(2):189–194CrossRefGoogle Scholar
  12. Chattopadhyay J, Sarkar RR, Abdllaoui AEL (2002) A delay differential equation model on harmful algal blooms in the presence of toxic substances. Math Med Biol 19(2):137–161zbMATHCrossRefGoogle Scholar
  13. Cheung R, Sillence DO, Tchan MC (2012) Homocysteine and erythrocyte sedimentation rate correlate with cerebrovascular disease in fabry disease. In: JIMD Rep. pp 101–105Google Scholar
  14. Choi Y, Park B, Kim K, Jeong BC, Seo SI, Jeon SS, Choi HY, Lee JE, Lee HM (2013) Erythrocyte sedimentation rate and anaemia are independent predictors of survival in patients with clear cell renal cell carcinoma. Br J Cancer 108(2):387CrossRefGoogle Scholar
  15. Chu KC, Kramer BS, Smart CR (1991) Analysis of the role of cancer prevention and control measures in reducing cancer mortality. J Natl Cancer Inst 83:1636–1643CrossRefGoogle Scholar
  16. Collares GB, Vidigal PG (2014) Recomendações para o uso da velocidade de hemossedimentação. Rev Med Minas Gerais 14(1):52–57Google Scholar
  17. Costa FS, Soares JCS, Plata ARG, de Oliveira EC (2017) On the fractional Harry Dym equation. Comput Appl Math.  https://doi.org/10.1007/s40314-017-0484-3
  18. Costa FS, Pereira MRA (2017) Travelling waves in space-fractional nonlinear diffusion with linear convection. J Appl Math Phys 5(02):462–468CrossRefGoogle Scholar
  19. Costa FS, Marão JAPF, Soares JCA, Capelas de Oliveira E (2015) Similarity solution to fractional nonlinear space-time diffusion-wave equation. J Math Phys 56(3):033507MathSciNetzbMATHCrossRefGoogle Scholar
  20. Ding Y, Ye H (2009) A fractional-order differential equation model of HIV infection of CD4+ t-cells. Math Comput Model 50(3):386–392MathSciNetzbMATHCrossRefGoogle Scholar
  21. Fahraeus R (1921) The suspension-stability of blood. Acta Med Scand 55:1–228Google Scholar
  22. Fahraeus R (1929) The suspension stability of the blood. Physiol Rev Am Physiol Soc 9(2):241–274Google Scholar
  23. Fahraeus R (1958) The influence of the rouleaux formation of the erythrocytes on the rheology of the blood. Acta Med Scand 161(2):151CrossRefGoogle Scholar
  24. Ghanem E, Antoci V, Pulido L, Joshi A, Hozack W, Parvizi J (2009) The use of receiver operating characteristics analysis in determining erythrocyte sedimentation rate and c-reactive protein levels in diagnosing periprosthetic infection prior to revision total hip arthroplasty. Int J Infect Dis 13(6):e444–e449CrossRefGoogle Scholar
  25. Glass R (1971) Factitiously low esr with chronic lymphocytic leukemia. N Engl J Med 285(16):921Google Scholar
  26. Gorenflo R, Kilbas AA, Mainardi F, Rogosin S (2014) Mittag–Leffler functions. Related topics and applications. Springer, BerlinzbMATHCrossRefGoogle Scholar
  27. Gourley SA, Kuang Y, Nagy JD (2008) Dynamics of a delay differential equation model of hepatitis B virus infection. J Biol Dyn 2(2):140–153MathSciNetzbMATHCrossRefGoogle Scholar
  28. Grace CS, Goldrick RB (1968) Fibrinolysis and body build: interrelationships between blood fibrinolysis, body composition and parameters of lipid and carbohydrate metabolism. J Atheroscler Res 8(4):705–719CrossRefGoogle Scholar
  29. Greidanus NV, Masri BA, Garbuz DS, Wilson SD, McAlinden MG, Xu M, Duncan CP (2007) Use of erythrocyte sedimentation rate and c-reactive protein level to diagnose infection before revision total knee arthroplasty: a prospective evaluation. J Bone Jt Surg Am 89(7):1409–1416Google Scholar
  30. Hameed MA, Waqas S (2006) Physiological basis and clinical utility of erythrocyte sedimentation rate. Cont Med Edu 22(2):214–218Google Scholar
  31. Harris PA, Garra R (2017) Nonlinear heat conduction equations with memory: physical meaning and analytical results. J Math Phys 58:063501MathSciNetzbMATHCrossRefGoogle Scholar
  32. Hashemi R, Majidi A, Motamed H, Amini A, Najari F, Tabatabaey A (2015) Erythrocyte sedimentation rate measurement using as a rapid alternative to the Westergren method. Emergency 3(2):50Google Scholar
  33. Hauser G, Tkalcic M, Pletikosic S, Grabar N, Stimac D (2012) Erythrocyte sedimentation rate-possible role in determining the existence of the low grade inflammation in irritable bowel syndrome patients. Med Hypotheses 78(6):818–820CrossRefGoogle Scholar
  34. He X-F (1990) Fractional dimensionality and fractional derivative spectra of interband optical transitions. Phys Rev B 42:751–756Google Scholar
  35. Hutchinson RM, Clay CM, Simpson MR, Wood JK (1978) Lowered erythrocyte-sedimentation rate with sodium valproate. Lancet 312(8103):1309CrossRefGoogle Scholar
  36. International Committee for Standardization in Haematology (1973) Reference method for the erythrocytesedimentation rate (ESR) test on human blood. Br J Haematol 24(1):671–673Google Scholar
  37. International Committee for Standardization in Haematology (1993) Recommendations for measurement of erythrocyte sedimentation rate. J Clin Pathol 46:198–203CrossRefGoogle Scholar
  38. Jandl JH (1996) Phystology of red blood cells. In: Jandl JH (ed) Textbook of hematolgy, 2d edn. Little, Brown, New YorkGoogle Scholar
  39. Khanday MA, Rafiq A, Nazir K (2017) Mathematical models for drug diffusion through the compartments of blood and tissue medium. Alex J Med 53:245–249CrossRefGoogle Scholar
  40. Kucharz EJ (1987) Edmund Biernacki and erythrocyte sedimentation rate. J Lab Clin Med 329:696Google Scholar
  41. Kucharz E (1988) The forgotten contribution of Dr. Edmund Faustyn Biernacki (1866–1911) to the discovery of the erythrocyte sedimentation rate. J Lab Clin Med 112(2):279–280MathSciNetGoogle Scholar
  42. Langlands TAM, Henry BI, Wearne SL (2009) Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J Math Biol 59(6):761MathSciNetzbMATHCrossRefGoogle Scholar
  43. Lenzi EK, Lenzi MK, Evangelista LR, Malacarne LC, Mendes RS (2009) Solutions for a fractional nonlinear diffusion equation with external force and absorbent term. J Stat Mech Theory Exp 2009(02):P02048CrossRefGoogle Scholar
  44. Matveev AS, Savkin AV (2002) Application of optimal control theory to analysis of cancer chemotherapy regimens. Syst Control Lett 46:311–321MathSciNetzbMATHCrossRefGoogle Scholar
  45. McPherson RA, Pincus MR (2017) Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, United StatesGoogle Scholar
  46. Mishra BK, Saini D (2007) Mathematical models on computer viruses. Appl Math Comput 187(2):929–936MathSciNetzbMATHGoogle Scholar
  47. Mommer MS, Lebiedz D (2009) Modeling subdiffusion using reaction diffusion systems. SIAM J Appl Math 70:112–132MathSciNetzbMATHCrossRefGoogle Scholar
  48. Murata T, Secomb TW (1988) Effects of shear rate on rouleaux formation in simple shear flow. Biorheology 25(1–2):113–122CrossRefGoogle Scholar
  49. Oke SI, Matadi MB, Xulu SS (2018) Optimal control analysis of a mathematical model for breast cancer. Math Comput Appl 23:21Google Scholar
  50. Olshaker JS, Jerrard DA (1997) Pregnancy and the erythrocyte sedimentation rate. J Emerg Med 108(6):869–874CrossRefGoogle Scholar
  51. Pahnehkolaei SMA, Alfi A, Machado JT (2017) Dynamic stability analysis of fractional order leaky integrator echo state neural networks. Commun Nonlinear Sci Numer Simul 47:328–337MathSciNetCrossRefGoogle Scholar
  52. Pasulka PS, Bistrian BR, Blackburn GL (1985) Obesity and erythrocyte sedimentation rates. Ann Intern Med 103(2):304–304CrossRefGoogle Scholar
  53. Pinto CMA, Carvalho ARM (2017) A latency fractional order model for HIV dynamics. J Comput Appl Math 312:240–256MathSciNetzbMATHCrossRefGoogle Scholar
  54. Pinto CMA, Machado JAT (2013) Fractional model for malaria transmission under control strategies. Comput Math Appl 66:908–916MathSciNetCrossRefGoogle Scholar
  55. Samanta GP, Aíza RG, Sharma S (2017) Analysis of a mathematical model of periodically pulsed chemotherapy treatment. Int J Dyn Control 5:842–857MathSciNetCrossRefGoogle Scholar
  56. Sharma GC, Jain M, Saral RN (1996) A mathematical model for concentration of blood affecting erythrocyte sedimentation. Comput Biol Med 26:1–7CrossRefGoogle Scholar
  57. Shearn MA, Kang IY (1986) Effect of age and sex on the erythrocyte sedimentation rate. J Rheumatol 13(2):297–298Google Scholar
  58. Shusterman N, Kimmel PL, Kiechle FL, Williams S, Morrison G, Singer I (1985) Factors influencing erythrocyte sedimentation in patients with chronic renal failure. Arch Intern Med 145(10):1796–1799CrossRefGoogle Scholar
  59. Shusterman N, Morrison G, Singer I, Kimmel P, Kiechle F (1986) The erythrocyte sedimentation rate and chronic renal failure. Ann Intern Med 105(5):801–801CrossRefGoogle Scholar
  60. Solberg BI, Olson RJ (2014) Clinical utility of the erythrocyte sedimentation rate: a case study. Clin Lab Sci 27(2):72Google Scholar
  61. Sousa JVC (2018) Time-fractional diffusion equation (Erythrocyte sedimentation rate), (in Portuguese) Ph.D. thesis, Imecc-Unicamp, CampinasGoogle Scholar
  62. Sousa JVC, de Oliveira E Capelas (2018b) On a new operator in fractional calculus and applications. arXiv:1710.03712
  63. Sousa JVC, de Oliveira EC (2017) Mittag–Leffler functions and the truncated \(\cal{V}\)-fractional derivative. Mediterr J Math 16(6):244MathSciNetzbMATHGoogle Scholar
  64. Sousa JVC, de Oliveira EC (2018c) Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput Appl Math.  https://doi.org/10.1007/s40314-018-0639-x MathSciNetzbMATHCrossRefGoogle Scholar
  65. Sousa JVC, de Oliveira EC (2018a) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91MathSciNetGoogle Scholar
  66. Sousa JVC, de Oliveira EC, Magna LA (2017) Fractional calculus and the ESR test. AIMS Math 2(4):692–705CrossRefGoogle Scholar
  67. Stojan G, Fang H, Magder L, Petri M (2013) Erythrocyte sedimentation rate is a predictor of renal and overall sle disease activity. Lupus 22(8):827–834CrossRefGoogle Scholar
  68. Talstad I, Scheie P, Dalen H, Roli J (1983) Influence of plasma proteins on erythrocyte morphology and sedimentation. Scand Haematol 31(5):478–484CrossRefGoogle Scholar
  69. Tamhane A, Redden DT, McGwin G, Brown EE, Westfall AO, Reynolds RJ, Hughes LB, Conn DL, Callahan LF, Jonas BL (2013) Comparison of the disease activity score using erythrocyte sedimentation rate and c-reactive protein in African Americans with rheumatoid arthritis. J Rheumatol 40(11):1812–1822CrossRefGoogle Scholar
  70. Tannenbaum AR, Georgiou T, Deasy J, Norton L (2018) Control and the analysis of cancer growth models. bioRxiv.  https://doi.org/10.1101/244301
  71. Tian C (2015) Turing pattern formation in a semiarid vegetation model with fractional-in-space diffusion. Bull Math Biol 77(11):2072–2085MathSciNetzbMATHCrossRefGoogle Scholar
  72. Vaidya VG, Alexandro FJ (1982) Evaluation of some mathematical models for tumor growth. Int J Biomed Comput 13(1):19–35MathSciNetCrossRefGoogle Scholar
  73. Van den Broek N, Letsky E (2001) Pregnancy and the erythrocyte sedimentation rate. Br J Obstet Gynaecol 108(11):1164–1167CrossRefGoogle Scholar
  74. Varalta N, Gomes AV, Camargo RF (2014) A prelude to the fractional calculus applied to tumor dynamic. TEMA (São Carlos) 15(2):211–221MathSciNetGoogle Scholar
  75. Vargas-De-León C (2015) Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun Nonlinear Sci Numer Simul 24:75–85MathSciNetCrossRefGoogle Scholar
  76. Villasana M, Radunskaya A (2003) A delay differential equation model for tumor growth. J Math Biol 47(3):270–294MathSciNetzbMATHCrossRefGoogle Scholar
  77. Wang W, Fergola P, Lombardo S, Mulone G (2006) Mathematical models of innovation diffusion with stage structure. Appl Math Model 30:129–146zbMATHCrossRefGoogle Scholar
  78. Warner DM, George CRP (1991) Erythrocyte sedimentation rate and related factors in end-stage renal failure. Nephron 57(2):248–248CrossRefGoogle Scholar
  79. Westergren A (1921) Studies of the suspension stability of the blood in pulmonary tuberculosis. Acta Med Scand 54(1):247–282CrossRefGoogle Scholar
  80. Westergren A (1926) The technique of the red cell sedimentation reaction. Am Rev Tuberc 14:94–101Google Scholar
  81. Whelan J, Huang CR, Copley AL (1971) Concentration profiles in erythrocyte sedimentation in human whole blood. J Biorheol 7(4):205–212CrossRefGoogle Scholar
  82. Wojtak W, Silva CJ, Torres DFM (2018) Uniform asymptotic stability of a fractional tuberculosis model. Math Model Nat Phenom 13:9MathSciNetCrossRefGoogle Scholar
  83. Zauber NP, Zauber AG (1987) Hematologic data of healthy very old people. JAMA 257(16):2181–2184CrossRefGoogle Scholar
  84. Zhang J, Johnson PC, Popel AS (2008) Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech 41(1):47–55CrossRefGoogle Scholar
  85. Zubik-Kowal B (2018) An algorithm for partial functional differential equations modeling tumor growth. Appl Math Comput 321:85–92MathSciNetGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Authors and Affiliations

  • J. Vanterler da C. Sousa
    • 1
    Email author
  • Magun N. N. dos Santos
    • 2
    • 3
  • L. A. Magna
    • 1
    • 2
    • 3
  • E. Capelas de Oliveira
    • 1
  1. 1.Department of Applied MathematicsImecc-UnicampCampinasBrazil
  2. 2.Department of Clinical Pathology, School of Medical SciencesUnicampCampinasBrazil
  3. 3.Department of Medical Genetics, School of Medical SciencesUnicampCampinasBrazil

Personalised recommendations