Skip to main content
Log in

Alzheimer’s Disease and Frontotemporal Dementia: The Current State of Genetics and Genetic Testing Since the Advent of Next-Generation Sequencing

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The advent of next-generation sequencing has changed genetic diagnostics, allowing clinicians to test concurrently for phenotypically overlapping conditions such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD). However, to interpret genetic results, clinicians require an understanding of the benefits and limitations of different genetic technologies, such as the inability to detect large repeat expansions in such diseases as C9orf72-associated FTD and amyotrophic lateral sclerosis. Other types of mutations such as large deletions or duplications and triple repeat expansions may also go undetected. Additionally, the concurrent testing of multiple genes or the whole exome increases the likelihood of discovering variants of unknown significance. Our goal here is to review the current knowledge about the genetics of AD and FTD and suggest up-to-date guidelines for genetic testing for these dementias. Despite the improvements in diagnosis due to biomarkers testing, AD and FTD can have overlapping symptoms. When used appropriately, genetic testing can elucidate the diagnosis and specific etiology of the disease, as well as provide information for the family and determine eligibility for clinical trials. Prior to ordering genetic testing, clinicians must determine the appropriate genes to test, the types of mutations that occur in these genes, and the best type of genetic test to use. Without this analysis, interpretation of genetic results will be difficult. Patients should be counseled about the benefits and limitations of different types of genetic tests so they can make an informed decision about testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jarmolowicz AI, Chen HY, Panegyres PK. The patterns of inheritance in early-onset dementia: Alzheimer’s disease and frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2014;30(3):299–306.

    Article  PubMed  Google Scholar 

  2. Wingo TS, Lah JJ, Levey AI, Cutler DJ. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol. 2012;69(1):59–64.

    Article  PubMed  Google Scholar 

  3. Hinz FI, Geschwind DH. Molecular genetics of neurodegenerative dementias. Cold Spring Harb Perspect Biol. 2017. https://doi.org/10.1101/cshperspect.a023705.

    Article  PubMed  Google Scholar 

  4. Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology. 2014;83(3):253–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33(9):1340–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 2016;12(6):733–48.

    Article  PubMed  Google Scholar 

  7. Larner AJ. Presenilin-1 mutations in Alzheimer’s disease: an update on genotype-phenotype relationships. J Alzheimers Dis. 2013;37(4):653–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ertekin-Taner N. Genetics of Alzheimer’s disease: a centennial review. Neurol Clin. 2007;25(3):611–67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl). 2016;94(7):739–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Goldman JS, Hahn SE, Catania JW, LaRusse-Eckert S, Butson MB, Rumbaugh M, et al. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet Med. 2011;13(6):597–605.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van den Bossche T, Sleegers K, Cuyvers E, Engelborghs S, Sieben A, De Roeck A, et al. Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation. Neurology. 2016;86(23):2126–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4, and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, et al. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol. 2015;78(3):487–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27.

    Article  PubMed  CAS  Google Scholar 

  15. Jay TR, von Saucken VE, Landreth GE. TREM2 in neurodegenerative diseases. Mol Neurodegener. 2017;12(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tosto G, Reitz C. Genomics of Alzheimer’s disease: value of high-throughput genomic technologies to dissect its etiology. Mol Cell Probes. 2016;30(6):397–403.

    Article  PubMed  CAS  Google Scholar 

  17. Piccoli E, Rossi G, Rossi T, Pelliccioni G, D’Amato I, Tagliavini F, et al. Novel PSEN1 mutations (H214N and R220P) associated with familial Alzheimer’s disease identified by targeted exome sequencing. Neurobiol Aging. 2016;40(192):e7–11.

    Google Scholar 

  18. van Duijn CM, Cruts M, Theuns J, Van Gassen G, Backhovens H, van den Broeck M, et al. Genetic association of the presenilin-1 regulatory region with early-onset Alzheimer’s disease in a population-based sample. Eur J Hum Genet. 1999;7(7):801–6.

  19. Lambert JC, Mann DM, Harris JM, Chartier-Harlin MC, Cumming A, Coates J, et al. The −48 C/T polymorphism in the presenilin 1 promoter is associated with an increased risk of developing Alzheimer’s disease and an increased Abeta load in brain. J Med Genet. 2001;38(6):353–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Theuns J, Remacle J, Killick R, Corsmit E, Vennekens K, Huylebroeck D, et al. Alzheimer-associated C allele of the promoter polymorphism −22C > T causes a critical neuron-specific decrease of presenilin 1 expression. Hum Mol Genet. 2003;12(8):869–77.

    Article  PubMed  CAS  Google Scholar 

  21. Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy number variants in Alzheimer’s disease. J Alzheimers Dis. 2017;55(1):37–52.

    Article  PubMed  CAS  Google Scholar 

  22. Hogan DB, Jette N, Fiest KM, Roberts JI, Pearson D, Smith EE, et al. The prevalence and incidence of frontotemporal dementia: a systematic review. Can J Neurol Sci. 2016;43(Suppl 1):S96–109.

    Article  PubMed  Google Scholar 

  23. Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. 2016;138(Suppl 1):54–70.

    Article  PubMed  CAS  Google Scholar 

  24. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. 2016;138(Suppl 1):32–53.

    Article  PubMed  CAS  Google Scholar 

  27. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40(5):572–4.

    Article  PubMed  CAS  Google Scholar 

  28. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–81.

    Article  PubMed  CAS  Google Scholar 

  29. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37(8):806–8.

    Article  PubMed  CAS  Google Scholar 

  30. Olszewska DA, Lonergan R, Fallon EM, Lynch T. Genetics of frontotemporal dementia. Curr Neurol Neurosci Rep. 2016;16(12):107.

    Article  PubMed  CAS  Google Scholar 

  31. Munch C, Rosenbohm A, Sperfeld AD, Uttner I, Reske S, Krause BJ, et al. Heterozygous R1101 K mutation of the DCTN1 gene in a family with ALS and FTD. Ann Neurol. 2005;58(5):777–80.

    Article  PubMed  CAS  Google Scholar 

  32. Fecto F, Siddique T. Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J Mol Neurosci. 2011;45(3):663–75.

    Article  PubMed  CAS  Google Scholar 

  33. Borroni B, Padovani A. Dementia: a new algorithm for molecular diagnostics in FTLD. Nat Rev Neurol. 2013;9(5):241–2.

    Article  PubMed  Google Scholar 

  34. Gellera C, Tiloca C, Del Bo R, Corrado L, Pensato V, Agostini J, et al. Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2013;84(2):183–7.

    Article  PubMed  Google Scholar 

  35. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137(Pt 8):2329–45.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 2015;85(24):2116–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702–5.

    Article  PubMed  CAS  Google Scholar 

  38. Coppola G, Chinnathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ortolaza AI, et al. Evidence for a role of the rare p. A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet. 2012;21(15):3500–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Labbe C, Ogaki K, Lorenzo-Betancor O, Soto-Ortolaza AI, Walton RL, Rayaprolu S, et al. Role for the microtubule-associated protein tau variant p. A152T in risk of alpha-synucleinopathies. Neurology. 2015;85(19):1680–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Benussi A, Padovani A, Borroni B. Phenotypic heterogeneity of monogenic frontotemporal dementia. Front Aging Neurosci. 2015;7:171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Van Deerlin VM, Forman MS, Farmer JM, Grossman M, Joyce S, Crowe A, et al. Biochemical and pathological characterization of frontotemporal dementia due to a Leu266Val mutation in microtubule-associated protein tau in an African American individual. Acta Neuropathol. 2007;113(4):471–9.

    Article  PubMed  CAS  Google Scholar 

  42. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4.

    Article  PubMed  CAS  Google Scholar 

  43. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–9.

    Article  PubMed  CAS  Google Scholar 

  44. Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM, et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry. 2013;84(9):956–62.

    Article  PubMed  Google Scholar 

  45. Miller ZA, Sturm VE, Camsari GB, Karydas A, Yokoyama JS, Grinberg LT, et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e301.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol. 2015;129(4):469–91.

    Article  PubMed  Google Scholar 

  47. Cruts M, Gijselinck I, Van Langenhove T, van der Zee J, Van Broeckhoven C. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci. 2013;36(8):450–9.

    Article  PubMed  CAS  Google Scholar 

  48. Cooper-Knock J, Shaw PJ, Kirby J. The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol. 2014;127(3):333–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hall D, Finger EC. Psychotic symptoms in frontotemporal dementia. Curr Neurol Neurosci Rep. 2015;15(7):46.

    Article  PubMed  CAS  Google Scholar 

  50. Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14(3):291–301.

    Article  PubMed  CAS  Google Scholar 

  51. Suh E, Lee EB, Neal D, Wood EM, Toledo JB, Rennert L, et al. Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathol. 2015;130(3):363–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bocchetta M, Cardoso MJ, Cash DM, Ourselin S, Warren JD, Rohrer JD. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. Neuroimage Clin. 2016;11:287–90.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gomez-Tortosa E, Gallego J, Guerrero-Lopez R, Marcos A, Gil-Neciga E, Sainz MJ, et al. C9ORF72 hexanucleotide expansions of 20–22 repeats are associated with frontotemporal deterioration. Neurology. 2013;80(4):366–70.

    Article  PubMed  CAS  Google Scholar 

  54. Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet. 2013;92(3):345–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rutherford NJ, Heckman MG, Dejesus-Hernandez M, Baker MC, Soto-Ortolaza AI, Rayaprolu S, et al. Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol Aging. 2012;33(12):2950 e5–7.

  56. van Blitterswijk M, Baker MC, DeJesus-Hernandez M, Ghidoni R, Benussi L, Finger E, et al. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology. 2013;81(15):1332–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Engelborghs S, De Bleecker J, et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol Psychiatry. 2016;21(8):1112–24.

    Article  PubMed  CAS  Google Scholar 

  58. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42(3):234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Nicholson AM, Rademakers R. What we know about TMEM106B in neurodegeneration. Acta Neuropathol. 2016;132(5):639–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen Y, Li S, Su L, Sheng J, Lv W, Chen G, et al. Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J Neurol. 2015;262(4):814–22.

    Article  PubMed  CAS  Google Scholar 

  61. Kara E, Ling H, Pittman AM, Shaw K, de Silva R, Simone R, et al. The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiol Aging. 2012;33(9):2231 e7–e14.

  62. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90(6):1102–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B, et al. TBK1 mutation spectrum in an extended European patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis. Hum Mutat. 2017;38(3):297–309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kovacs GG, van der Zee J, Hort J, Kristoferitsch W, Leitha T, Hoftberger R, et al. Clinicopathological description of two cases with SQSTM1 gene mutation associated with frontotemporal dementia. Neuropathology. 2016;36(1):27–38.

    Article  PubMed  CAS  Google Scholar 

  65. Wood EM, Falcone D, Suh E, Irwin DJ, Chen-Plotkin AS, Lee EB, et al. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol. 2013;70(11):1411–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Van Deerlin VM. The genetics and neuropathology of neurodegenerative disorders: perspectives and implications for research and clinical practice. Acta Neuropathol. 2012;124(3):297–303.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Almeida MR, Letra L, Pires P, Santos A, Rebelo O, Guerreiro R, et al. Characterization of an FTLD-PDB family with the coexistence of SQSTM1 mutation and hexanucleotide (G(4)C(2)) repeat expansion in C9orf72 gene. Neurobiol Aging. 2016;40(191):e1–8.

    Google Scholar 

  69. Origone P, Accardo J, Verdiani S, Lamp M, Arnaldi D, Bellone E, et al. Neuroimaging features in C9orf72 and TARDBP double mutation with FTD phenotype. Neurocase. 2014;20:1–6.

    Article  Google Scholar 

  70. Sha SJ, Khazenzon AM, Ghosh PM, Rankin KP, Pribadi M, Coppola G, et al. Early-onset Alzheimer’s disease versus frontotemporal dementia: resolution with genetic diagnoses? Neurocase. 2016;22(2):161–7.

    Article  PubMed  Google Scholar 

  71. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005;65(11):1817–9.

    Article  PubMed  CAS  Google Scholar 

  73. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivianna M. Van Deerlin.

Ethics declarations

Conflict of Interest

VMV and JSG declare no conflicts of interest directly relevant to this study.

Funding

This study was funded by the National Institutes of Health (NIH) (P01-AG-017586, P30 AG-01024, P50 AG-008702) and the New York State Department of Health (C031425).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldman, J.S., Van Deerlin, V.M. Alzheimer’s Disease and Frontotemporal Dementia: The Current State of Genetics and Genetic Testing Since the Advent of Next-Generation Sequencing. Mol Diagn Ther 22, 505–513 (2018). https://doi.org/10.1007/s40291-018-0347-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0347-7

Navigation