Skip to main content

Advertisement

Log in

Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We investigated whether chromosome 9 open reading frame 72 hexanucleotide repeat expansion (C9orf72 expansion) size in peripheral DNA was associated with clinical differences in frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) linked to C9orf72 repeat expansion mutations. A novel quantification workflow was developed to measure C9orf72 expansion size by Southern blot densitometry in a cross-sectional cohort of C9orf72 expansion carriers with FTD (n = 39), ALS (n = 33), both (n = 35), or who are unaffected (n = 21). Multivariate linear regressions were performed to assess whether C9orf72 expansion size from peripheral DNA was associated with clinical phenotype, age of disease onset, disease duration and age at death. Mode values of C9orf72 expansion size were significantly shorter in FTD compared to ALS (p = 0.0001) but were not associated with age at onset in either FTD or ALS. A multivariate regression model correcting for patient’s age at DNA collection and disease phenotype revealed that C9orf72 expansion size is significantly associated with shorter disease duration (p = 0.0107) for individuals with FTD, but not with ALS. Despite considerable somatic instability of the C9orf72 expansion, semi-automated expansion size measurements demonstrated an inverse relationship between C9orf72 expansion size and disease duration in patients with FTD. Our finding suggests that C9orf72 repeat size may be a molecular disease modifier in FTD linked to hexanucleotide repeat expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628. doi:10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  2. Allignol A, Schumacher M, Beyersmann J (2011) Empirical transition matrix of multi-state models: the etm package. J Stat Softw 38:1–15

    Google Scholar 

  3. Beck J, Poulter M, Hensman D et al (2013) Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92:345–353. doi:10.1016/j.ajhg.2013.01.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54:343–349

    Article  CAS  PubMed  Google Scholar 

  5. Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839. doi:10.1007/s00401-012-0970-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107

    Article  PubMed  Google Scholar 

  7. Byrne S, Elamin M, Bede P et al (2012) Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11:232–240. doi:10.1016/S1474-4422(12)70014-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chio A, Calvo A, Mazzini L et al (2012) Extensive genetics of ALS: a population-based study in Italy. Neurology 79:1983–1989. doi:10.1212/WNL.0b013e3182735d36

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chong SS, McCall AE, Cota J et al (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10:344–350. doi:10.1038/ng0795-344

    Article  CAS  PubMed  Google Scholar 

  10. Cleary JD, Pearson CE (2005) Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet 21:272–280. doi:10.1016/j.tig.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Cooper-Knock J, Shaw PJ, Kirby J (2014) The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol 127:333–345. doi:10.1007/s00401-014-1251-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. doi:10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dion V, Wilson JH (2009) Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 25:288–297. doi:10.1016/j.tig.2009.04.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dols-Icardo O, Garcia-Redondo A, Rojas-Garcia R et al (2014) Characterization of the repeat expansion size in C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet 23:749–754. doi:10.1093/hmg/ddt460

    Article  CAS  PubMed  Google Scholar 

  15. Gallagher MD, Suh E, Grossman M et al (2014) TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 127:407–418. doi:10.1007/s00401-013-1239-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gomes-Pereira M, Hilley JD, Morales F, Adam B, James HE, Monckton DG (2014) Disease-associated CAG.CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion. Nucleic Acids Res 42:7047–7056. doi:10.1093/nar/gku285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. doi:10.1212/WNL.0b013e31821103e6

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hu WT, Seelaar H, Josephs KA et al (2009) Survival profiles of patients with frontotemporal dementia and motor neuron disease. Arch Neurol 66:1359–1364. doi:10.1001/archneurol.2009.253

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hubers A, Marroquin N, Schmoll B et al (2014) Polymerase chain reaction and southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol Aging 35(5):1214.e1–1214.e6. doi:10.1016/j.neurobiolaging.2013.11.034

    Article  CAS  Google Scholar 

  20. Hubert L Jr, Lin Y, Dion V, Wilson JH (2011) Topoisomerase 1 and single-strand break repair modulate transcription-induced CAG repeat contraction in human cells. Mol Cell Biol 31:3105–3112. doi:10.1128/MCB.05158-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Irwin DJ, Cairns NJ, Grossman M et al (2015) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491. doi:10.1007/s00401-014-1380-1

    Article  PubMed  Google Scholar 

  22. Kostic VS, Dobricic V, Stankovic I, Ralic V, Stefanova E (2014) C9orf72 expansion as a possible genetic cause of Huntington disease phenocopy syndrome. J Neurol 261:1917–1921. doi:10.1007/s00415-014-7430-8

    Article  CAS  PubMed  Google Scholar 

  23. Lesage S, Le Ber I, Condroyer C et al (2013) C9orf72 repeat expansions are a rare genetic cause of parkinsonism. Brain 136:385–391. doi:10.1093/brain/aws357

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lindquist SG, Duno M, Batbayli M et al (2013) Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet 83:279–283. doi:10.1111/j.1399-0004.2012.01903.x

    Article  CAS  PubMed  Google Scholar 

  25. Liu EY, Russ J, Wu K et al (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128:525–541. doi:10.1007/s00401-014-1286-y

    Article  CAS  PubMed  Google Scholar 

  26. Liu G, Chen X, Bissler JJ, Sinden RR, Leffak M (2010) Replication-dependent instability at (CTG) × (CAG) repeat hairpins in human cells. Nat Chem Biol 6:652–659. doi:10.1038/nchembio.416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11:165–170. doi:10.1038/nrm2854

    Article  CAS  PubMed  Google Scholar 

  28. Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat Genet 15:197–200. doi:10.1038/ng0297-197

    Article  CAS  PubMed  Google Scholar 

  29. McMillan CT, Toledo JB, Avants BB et al (2014) Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiol Aging 35:1473–1482. doi:10.1016/j.neurobiolaging.2013.11.029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799. doi:10.1038/nrg2828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742. doi:10.1038/nrg1689

    Article  CAS  PubMed  Google Scholar 

  32. Rascovsky K, Grossman M (2013) Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration. Int Rev Psychiatry 25:145–158. doi:10.3109/09540261.2013.763341

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477. doi:10.1093/brain/awr179

    Article  PubMed Central  PubMed  Google Scholar 

  34. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. doi:10.1038/nn.3584

    Article  CAS  PubMed  Google Scholar 

  35. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72:257–268. doi:10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Russ J, Liu EY, Wu K et al (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129:39–52. doi:10.1007/s00401-014-1365-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Smith BN, Newhouse S, Shatunov A et al (2013) The C9ORF72 expansion mutation is a common cause of ALS ± FTD in Europe and has a single founder. Eur J Hum Genet 21:102–108. doi:10.1038/ejhg.2012.98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tanaka F, Sobue G, Doyu M et al (1996) Differential pattern in tissue-specific somatic mosaicism of expanded CAG trinucleotide repeats in dentatorubral–pallidoluysian atrophy, Machado–Joseph disease, and X-linked recessive spinal and bulbar muscular atrophy. J Neurol Sci 135:43–50

    Article  CAS  PubMed  Google Scholar 

  39. van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E et al (2013) Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol 12:978–988. doi:10.1016/S1474-4422(13)70210-2

    Article  CAS  PubMed  Google Scholar 

  40. van Blitterswijk M, Mullen B, Nicholson AM et al (2014) TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 127:397–406. doi:10.1007/s00401-013-1240-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wood EM, Falcone D, Suh E et al (2013) Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA neurology 70:1411–1417. doi:10.1001/jamaneurol.2013.3956

    Article  PubMed Central  PubMed  Google Scholar 

  42. Xi Z, Yunusova Y, van Blitterswijk M et al (2014) Identical twins with the C9orf72 repeat expansion are discordant for ALS. Neurology 83:1476–1478. doi:10.1212/WNL.0000000000000886

    Article  PubMed  Google Scholar 

  43. Yang Z, Lau R, Marcadier JL, Chitayat D, Pearson CE (2003) Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am J Hum Genet 73:1092–1105. doi:10.1086/379523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and their families for their meaningful contributions that made this study possible. This study was supported by National Institute of Health (NIH) Grants P01 AG032953, PO1 AG017586, P30 AG010124, K01 AG043503, K08 AG039510, K23 NS088341, NIH T32MH065218, and the Doris Duke Charitable Foundation Clinical Scientist Development Award (EBL) and the Wyncote Foundation (CTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EunRan Suh.

Additional information

E. R. Suh and E. B. Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, E., Lee, E.B., Neal, D. et al. Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathol 130, 363–372 (2015). https://doi.org/10.1007/s00401-015-1445-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1445-9

Keywords

Navigation