Skip to main content
Log in

Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3′-untranslated region (3′-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer’s disease and Parkinson’s disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  2. Sullivan CS, Grundhoff A, Tevethia S, Treisman R, Pipas JM, Ganem D. Expression and function of microRNAs in viruses great and small. Cold Spring Harb Symp Quant Biol. 2006;71:351–6.

    Article  CAS  PubMed  Google Scholar 

  3. Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet. 2006;38(Suppl):S31–6.

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004;32:D109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRNABase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8.

    Article  CAS  PubMed  Google Scholar 

  6. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRNABase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–4.

    Article  CAS  PubMed  Google Scholar 

  7. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    Article  CAS  PubMed  Google Scholar 

  8. Chen C-Z, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  10. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  11. Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer-new paradigms in molecular oncology. Curr Opin Cell Biol. 2009;21:470–9.

    Article  CAS  PubMed  Google Scholar 

  12. Esquela-Kerscher A, Slack FJ. OncomiRNAs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  13. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  16. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93:863–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumor Biol. 2016. https://doi.org/10.1007/s13277-016-5184-x.

    Article  Google Scholar 

  18. Tuli HS, Kashyap D, Bedi SK, Kumar P, Kumar G, Sandhu SS. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci. 2015;143:71–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kashyap D, Mondal R, Tuli HS, Kumar G, Sharma AK. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumor Biol. 2016. https://doi.org/10.1007/s13277-016-5194-8.

    Article  Google Scholar 

  20. Kashyap D, Kumar G, Sharma A, Sak K, Tuli HS, Mukherjee TK. Mechanistic insight into carnosol-mediated pharmacological effects: recent trends and advancements. Life Sci. 2017;169:27–36.

    Article  CAS  PubMed  Google Scholar 

  21. Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 2016;146:201–13.

    Article  CAS  PubMed  Google Scholar 

  22. Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol—a dietary anticancer molecule with multiple mechanisms of action: recent trends and advancements. J Funct Foods. 2017;30:203–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin Y-C, Lin J-F, Tsai T-F, Chou K-Y, Chen H-E, Hwang TI-S. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J Surg. 2017;40:396–406.

    Article  PubMed  Google Scholar 

  24. Zhu Z, Tang J, Wang J, Duan G, Zhou L, Zhou X. MiRNA-138 acts as a tumor suppressor by targeting EZH2 and enhances cisplatin-induced apoptosis in osteosarcoma cells. PLoS One. 2016;11:e0150026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998;3:697–707.

    Article  CAS  PubMed  Google Scholar 

  26. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22:3172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, et al. Structure and activity of putative intronic miRNA promoters. RNA. 2010;16:495–505.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA. 2007;104:17719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gregory RI, Yan K, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.

    Article  CAS  PubMed  Google Scholar 

  31. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.

    Article  PubMed  Google Scholar 

  34. Ketting RF, Fischer SEJ, Bernstein E, Sijen T, Hannon GJ, Plasterk RHA. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15:2654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.

    Article  CAS  PubMed  Google Scholar 

  36. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010;24:992–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang S-S, Zhang Z, Liu Y. RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol Ann Rev. 2012;66:305–23.

    Article  CAS  Google Scholar 

  38. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–87.

    Article  CAS  PubMed  Google Scholar 

  39. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around Jh on chromosome 14 and near a transcriptional unit on 18. Cell. 1985;41:899–906.

    Article  CAS  PubMed  Google Scholar 

  40. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA. 1985;82:7439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujise K, Zhang D, Liu J, Yeh ET. Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J Biol Chem. 2000;275:39458–65.

    Article  CAS  PubMed  Google Scholar 

  42. Wuillème-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005;19:1248–52.

    Article  PubMed  CAS  Google Scholar 

  43. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10:331–42.

    Article  CAS  PubMed  Google Scholar 

  44. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lutz RJ. Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochem Soc Trans. 2000;28:51–6.

    Article  CAS  PubMed  Google Scholar 

  46. Cory S, Huang DCS, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22:8590–607.

    Article  CAS  PubMed  Google Scholar 

  47. Dzhagalov I, St. John A, He YW. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood. 2007;109:1620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2003;426:671–6.

    Article  CAS  PubMed  Google Scholar 

  49. Arbour N, Vanderluit JL, Le Grand JN, Jahani-Asl A, Ruzhynsky VA, Cheung ECC, et al. Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci. 2008;28:6068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akgul C, Moulding D, White MR, Edwards SW. In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS Lett. 2000;478:72–6.

    Article  CAS  PubMed  Google Scholar 

  51. Singh R, Saini N. Downregulation of BCL2 by miRNAs augment drug-induced apoptosis -a combined computational and experimental approach. J Cell Sci. 2012;125:1568–78.

    Article  CAS  PubMed  Google Scholar 

  52. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miRNA-15 and miRNA-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. MicroRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24:1363–9.

    CAS  PubMed  Google Scholar 

  54. Nie J, Liu L, Zheng W, Chen L, Wu X, Xu Y, et al. MicroRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting cyclin D1 and Bcl-2. Carcinogenesis. 2012;33:220–5.

    Article  CAS  PubMed  Google Scholar 

  55. Sun C, Sang M, Li S, Sun X, Yang C, Xi Y, et al. Hsa-miRNA-139-5p inhibits proliferation and causes apoptosis associated with down-regulation of c-Met. Oncotarget. 2015;6:39756–92.

    PubMed  PubMed Central  Google Scholar 

  56. Zhao D, Sui Y, Zheng X. MIRNA-331-3p inhibits proliferation and promotes apoptosis by targeting HER2 through the PI3K/Akt and ERK1/2 pathways in colorectal cancer. Oncol Rep. 2016;35:1075–82.

    Article  CAS  PubMed  Google Scholar 

  57. Huang F, Jin Y, Wei Y. MicroRNA-187 induces diffuse large B-cell lymphoma cell apoptosis via targeting BCL6. Oncol Lett. 2016;11:2845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu J, Liao X, Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer. 2010;126:1029–35.

    CAS  PubMed  Google Scholar 

  59. Xie W, Qin W, Kang Y, Zhou Z, Qin A. MicroRNA-340 inhibits tumor cell proliferation and induces apoptosis in endometrial carcinoma cell line RL 95-2. Med Sci Monit. 2016;22:1540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duan J, Zhou K, Tang X, Duan J, Zhao L. MicroRNA-34a inhibits cell proliferation and induces cell apoptosis of glioma cells via targeting of Bcl-2. Mol Med Rep. 2016;14:432–8.

    Article  CAS  PubMed  Google Scholar 

  61. Li W, Wu H, Li Y, Pan H, Meng T, Wang X. MicroRNA-143 promotes apoptosis of osteosarcoma cells by caspase-3 activation via targeting Bcl-2. Biomed. Pharmacother. 2016;80:8–15.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang T, Zou P, Wang T, Xiang J, Cheng J, Chen D, et al. Down-regulation of miRNA-320 associated with cancer progression and cell apoptosis via targeting Mcl-1 in cervical cancer. Tumor Biol. 2016;37:8931–40.

    Article  CAS  Google Scholar 

  63. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–6.

    Article  CAS  PubMed  Google Scholar 

  64. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–13.

    Article  CAS  PubMed  Google Scholar 

  65. Liu C, Zhang A, Cheng L, Gao Y. miRNA-410 regulates apoptosis by targeting Bak1 in human colorectal cancer cells. Mol Med Rep. 2016;14:467–73.

    Article  CAS  PubMed  Google Scholar 

  66. Ye Z, Hao R, Cai Y, Wang X, Huang G. Knockdown of miRNA-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumor Biol. 2016;37:4509–15.

    Article  CAS  Google Scholar 

  67. Zhu K, He Y, Xia C, Yan J, Hou J, Kong D, et al. MicroRNA-15a inhibits proliferation and induces apoptosis in CNE1 nasopharyngeal carcinoma cells. Oncol Res. 2016;24:145–51.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zadeh MM, Motamed N, Ranji N, Majidi M, Falahi F. Silibinin-induced apoptosis and downregulation of microRNA-21 and microRNA-155 in MCF-7 human breast cancer cells. J Breast Cancer. 2016;19:45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol. 2004;14:231–43.

    Article  CAS  PubMed  Google Scholar 

  70. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998;17:3247–59.

    Article  PubMed  Google Scholar 

  71. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene. 2008;27:6252–75.

    Article  CAS  PubMed  Google Scholar 

  72. Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;9:1543–68.

    Article  CAS  Google Scholar 

  73. Gu C, Wang Z, Jin Z, Li G, Kou Y, Jia Z, et al. MicroRNA-212 inhibits the proliferation, migration and invasion of renal cell carcinoma by targeting X-linked inhibitor of apoptosis protein (XIAP). Oncotarget. 2017;8:92119–33.

    PubMed  PubMed Central  Google Scholar 

  74. Chen X, Chen X-G, Hu X, Song T, Ou X, Zhang C, et al. miRNA-34a and miRNA-203 inhibit survivin expression to control cell proliferation and survival in human osteosarcoma cells. J. Cancer. 2016;7:1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu L, Chen Z, Xue F, Chen W, Ma R, Cheng S, et al. MicroRNA-24 inhibits growth, induces apoptosis, and reverses radioresistance in laryngeal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Cancer Cell Int. 2015;15:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wang C, Ju H, Shen C, Tong Z. miRNA-429 mediates delta-tocotrienol-induced apoptosis in triple-negative breast cancer cells by targeting XIAP. Int J Clin Exp Med. 2015;8:15648–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang D, Li Y, Zhao D. Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miRNA-340/XIAP signaling pathway. Oncol Lett. 2017;14:1811–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xie Y, Tobin LA, Camps J, Wangsa D, Yang J, Rao M, et al. MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene. 2013;32:2442–51.

    Article  CAS  PubMed  Google Scholar 

  79. Zhu J, Sun C, Wang L, Xu M, Zang Y, Zhou Y, et al. Targeting survivin using a combination of miRNA-494 and survivin shRNA has synergistic effects on the suppression of prostate cancer growth. Mol Med Rep. 2016;13:1602–10.

    Article  CAS  PubMed  Google Scholar 

  80. Robey RB, Hay N. Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19:25–31.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang S, Yu D. PI(3)king apart PTEN’s role in cancer. Clin Cancer Res. 2010;16:4325–30.

    Article  CAS  PubMed  Google Scholar 

  82. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.

    Article  CAS  PubMed  Google Scholar 

  83. Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–27.

    Article  CAS  PubMed  Google Scholar 

  84. Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. del Peso L, González-García M, Page C, Herrera R, Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997;278:687–9.

    Article  PubMed  Google Scholar 

  86. Datta SR, Dudek H, Xu T, Masters S, Haian F, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  CAS  PubMed  Google Scholar 

  87. Donepudi M, Grütter MG. Structure and zymogen activation of caspases. Biophys Chem. 2002;101–102:145–53.

    Article  PubMed  Google Scholar 

  88. Cardone MH. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.

    Article  CAS  PubMed  Google Scholar 

  89. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 2001;98:11598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002;21:1299–303.

    Article  CAS  PubMed  Google Scholar 

  91. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999;19:6195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11:11–23.

    Article  CAS  PubMed  Google Scholar 

  93. Pan LT, Sheung Y, Guo WP, Bin RZ, Cai ZM. Hedyotis diffusa plus Scutellaria barbata induce bladder cancer cell apoptosis by inhibiting Akt signaling pathway through downregulating miRNA-155 expression. Evidence-based Complement. Altern Med. 2016;2016:1–10.

    Google Scholar 

  94. Song H, Zhang Y, Liu N, Wan C, Zhang D, Zhao S, et al. miRNA-92b regulates glioma cells proliferation, migration, invasion, and apoptosis via PTEN/Akt signaling pathway. J Physiol Biochem. 2016;72:1–11.

    Google Scholar 

  95. Li W, Dai H, Ou Q, Zuo G, Liu C. Overexpression of microRNA-30a-5p inhibits liver cancer cell proliferation and induces apoptosis by targeting MTDH/PTEN/AKT pathway. Tumor Biol. 2016;37:5885–95.

    Article  CAS  Google Scholar 

  96. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang H, Ozaki I, Mizuta T, Hamajima H, Yasutake T, Eguchi Y, et al. Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene. 2006;25:6101–12.

    Article  CAS  PubMed  Google Scholar 

  98. Gironella M, Seux M, Xie M-J, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miRNA-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA. 2007;104:16170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu F, Huang W, Wang X. MicroRNA-18a regulates gastric carcinoma cell apoptosis and invasion by suppressing hypoxia-inducible factor-1α expression. Exp Ther Med. 2015;10:717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang L, Liu Z-M, Rao Y-W, Cui S-Q, Wang H, Jia X-J. Downregulation of microRNA-586 inhibits proliferation, invasion and metastasis and promotes apoptosis in human osteosarcoma U2-OS cell line. Cytogenet Genome Res. 2015;146:268–78.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Z, Kong Y, Yang W, Ma F, Zhang Y, Ji S, et al. Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting MET. Oncol Rep. 2016;36:2391–7.

    Article  CAS  PubMed  Google Scholar 

  103. Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al. Apoptosis induction by antisense oligonucleotides against miRNA-17-5p and miRNA-20a in lung cancers overexpressing miRNA-17-92. Oncogene. 2007;26:6099–105.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Y, Peng Z, Zhao Y, Chen L. MicroRNA-25 inhibits cell apoptosis of human gastric adenocarcinoma cell line AGS via regulating CCNE1 and MYC. Med Sci Monit. 2016;22:1415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Song Q, Song J, Wang Q, Ma Y, Sun N, Ma J, et al. miRNA-548d-3p/TP53BP2 axis regulates the proliferation and apoptosis of breast cancer cells. Cancer Med. 2016;5:315–24.

    Article  CAS  PubMed  Google Scholar 

  106. Ahmadi S, Sharifi M, Salehi R. Locked nucleic acid inhibits miRNA-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Ther. 2016;23:199–205.

    Article  CAS  PubMed  Google Scholar 

  107. Ma Q, Huang J, Xiong Y, Yang X, Han R, Zhu W. MicroRNA-96 regulates apoptosis by targeting PDCD4 in human glioma cells. Technol Cancer Res Treat. 2017;16:92–8.

    Article  CAS  PubMed  Google Scholar 

  108. Sharifi M, Salehi R. Blockage of miRNA-92a-3p with locked nucleic acid induces apoptosis and prevents cell proliferation in human acute megakaryoblastic leukemia. Cancer Gene Ther. 2015;1640:29–35.

    Google Scholar 

  109. Cheng Y, Xiang G, Meng Y, Dong R. MiRNA-183-5p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting the PDCD4. Reprod Biol. 2016;16:225–33.

    Article  PubMed  Google Scholar 

  110. Chen H, Fan Y, Xu W, Chen J, Xu C, Wei X, et al. miRNA-10b inhibits apoptosis and promotes proliferation and invasion of endometrial cancer cells via targeting HOXB3. Cancer Biother Radiopharm. 2016;31:225–31.

    Article  CAS  PubMed  Google Scholar 

  111. Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, et al. Cancer-associated fibroblasts promote cancer cell growth through a miRNA-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget. 2016;5:1290–303.

    Google Scholar 

  112. Fenger JM, Roberts RD, Iwenofu OH, Bear MD, Zhang X, Couto JI, et al. MiRNA-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. BMC Cancer. 2016;16:784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Knirsh R, Ben-dror I, Modai S, Shomron N, Vardimon L. MicroRNA 10b promotes abnormal expression of the proto-oncogene c-Jun in metastatic breast cancer cells. 2016;7:59932–44.

  114. Gu Y, Liu S, Zhang X, Chen G, Liang H, Yu M. Oncogenic miRNA-19a and miRNA-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer. Protein Cell. 2017;8:455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W, et al. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int BioMed Central. 2017;2017:14.

    Article  CAS  Google Scholar 

  116. Hong Y, Liang H, Uzair-ur-Rehman Wang Y, Zhang W, Zhou Y, et al. miRNA-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zheng Y, Xiao K, Xiao G, Tong S, Ding Y, Wang Q, et al. MicroRNA-103 promotes tumor growth and metastasis in colorectal cancer by directly targeting LATS2. Oncol Lett. 2016;12:2194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tian S, Guo X, Yu C, Sun C, Jiang J. miRNA-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1. Oncotarget. 2016;8:19–23.

    Google Scholar 

  119. Ding L, Yu L, Han N, Zhang B. miRNA-141 promotes colon cancer cell proliferation by inhibiting MAP2K4. Oncol Lett. 2017;13:1665–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zhang H, Wang Y, Xu T, Li C, Wu J, He Q, et al. Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncol Lett. 2016;12:3208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu K, Xie F, Gao A, Zhang R, Zhang L, Xiao Z, et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miRNA-181a-5p, miRNA-30e-5p/TUSC3 axis. Mol Cancer. 2017;16:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wang W, Wu L. miRNA182 activates the Ras–MEK–ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Oncotargets Ther. 2017;10:667–79.

    Article  CAS  Google Scholar 

  123. Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. miRNA-19a promotes colorectal cancer proliferation and migration by targeting. Mol Cancer. 2017;1:1–17.

    Google Scholar 

  124. Li X, Han J, Zhu H, Peng L, Chen Z. MiRNA-181b-5p mediates TGF-β1-induced epithelial-to-mesenchymal transition in non-small cell lung cancer stem-like cells derived from lung adenocarcinoma A549 cells. Int J Oncol. 2017;51:158–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pan Y, Shu X, Sun L, Yu L, Sun L, Yang Z, et al. miRNA-196a-5p modulates gastric cancer stem cell characteristics by targeting Smad4. Int J Oncol. 2017;50:1965–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Muhammad N, Bhattacharya S, Steele R, Ray RB. Anti-miRNA-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget. 2016;7:58595–605.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Li T, Pan H, Li R. The dual regulatory role of miRNA-204 in cancer. Tumor Biol. 2016;37:11667–77.

    Article  CAS  Google Scholar 

  128. Karaayvaz M, Zhang C, Liang S, Shroyer KR, Ju J. Prognostic significance of miRNA-205 in endometrial cancer. PLoS One. 2012;7:1–8.

    Article  CAS  Google Scholar 

  129. Wei J, Zhang L, Li J, Zhu S, Tai M, Mason CW, et al. MicroRNA-205 promotes cell invasion by repressing TCF21 in human ovarian cancer. J Ovarian Res. 2017;10:33.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Li J, Hu K, Gong G, Zhu D, Wang Y, Liu H. Upregulation of MiRNA-205 transcriptionally suppresses SMAD4 and PTEN and contributes to human ovarian cancer progression. Sci Rep. 2017;7:41330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Yin K, Liu M, Zhang M, Wang F, Fen M, Liu Z. miRNA-208a-3p suppresses cell apoptosis by targeting PDCD4 in gastric cancer. Oncotarget. 2016;7:6732–67332.

    Google Scholar 

  132. Press D. MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation cell cycle and migration in human breast cancer. Oncotargets Ther. 2016;9:5245–55.

    Article  Google Scholar 

  133. Liu H, Pan Y, Han X, Liu J, Li R. MicroRNA-216a promotes the metastasis and epithelial—mesenchymal transition of ovarian cancer by suppressing the PTEN/AKT pathway. Oncotargets Ther. 2017;10:2701–9.

    Article  Google Scholar 

  134. Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JAR, et al. miRNA-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287:42084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun CC, Li SJ, Yuan ZP, Li DJ. MicroRNA—346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway. Aging. 2016;8:509–24.

    Article  Google Scholar 

  136. Ho J, Hsu R, Liu J, Chen S, Liao G. MicroRNA-382-5p aggravates breast cancer progression by regulating the RERG/Ras/ERK signaling axis. Oncotarget. 2017;8:22443–59.

    Article  PubMed  Google Scholar 

  137. Guo R, Gu J, Zhang Z, Wang Y, Gu C. MiRNA-451 promotes cell proliferation and metastasis in pancreatic cancer through targeting CAB39. Biomed Res Int. 2017;2017:2381482.

    PubMed  PubMed Central  Google Scholar 

  138. Li Z, Meng Q, Pan A, Wu X, Cui J. MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Oncotarget. 2017;8:19455–66.

    PubMed  Google Scholar 

  139. Wang J, Li H, Wang Y, Wang L, Yan X, Zhang D, et al. MicroRNA-552 enhances metastatic capacity of colorectal cancer cells by targeting a disintegrin and metalloprotease 28. Oncotarget. 2016;7:70194–210.

    PubMed  PubMed Central  Google Scholar 

  140. Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, et al. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis. 2016;7:e2382-12.

    Google Scholar 

  141. Lam CS, Ng L, Chow AK, Wan TM, Yau S, Cheng NS, et al. Identification of microRNA 885-5p as a novel regulator of tumor metastasis by targeting CPEB2 in colorectal cancer. Oncotarget. 2017;8:26858–70.

    PubMed  PubMed Central  Google Scholar 

  142. Liu C, Wang C, Wang JI, Huang H. miRNA-1297 promotes cell proliferation by inhibiting RB1 in liver cancer. Oncol Lett. 2016;12:5177–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Xiao J, Lv D, Zhou J, Bei Y, Chen T, Hu M, et al. Therapeutic inhibition of miRNA-4260 suppresses colorectal cancer via targeting MCC and SMAD4. Theranostics. 2017;7:1901–13.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nip H, Dar AA, Saini S, Colden M, Varahram S, Chowdhary H, et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget. 2016;7:68371–84.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miRNA-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010;21:140–6.

    Article  CAS  PubMed  Google Scholar 

  146. Zhao X, Zhou Y, Chen YU, Yu F. miRNA-494 inhibits ovarian cancer cell proliferation and promotes apoptosis by targeting FGFR2. Oncol Lett. 2016;11:4245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li Y, Zu L, Wang Y, Wang M, Chen P, Zhou Q. miRNA-132 inhibits lung cancer cell migration and invasion by targeting SOX4. J Thorac Dis. 2015;7:1563–9.

    PubMed  PubMed Central  Google Scholar 

  148. Wang Y, Sun B, Sun H, Zhao X, Wang X, Zhao N, et al. Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miRNA-26b-5p. Tumor Biol. 2016;37:10965–79.

    Article  CAS  Google Scholar 

  149. Cui R, Guan Y, Sun C, Chen L, Bao Y, Li G, et al. A tumor-suppressive microRNA, miRNA-504, inhibits cell proliferation and promotes apoptosis by targeting FOXP1 in human glioma. Cancer Lett. 2016;374:1–11.

    Article  CAS  PubMed  Google Scholar 

  150. Wang X, Jiang F, Song H, Li X, Xian J, Gu X. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochem Biophys Res Commun. 2016;470:620–6.

    Article  CAS  PubMed  Google Scholar 

  151. Li Y, Chen D, Jin L, Liu J, Su Z, Li Y, et al. MicroRNA-20b-5p functions as a tumor suppressor in renal cell carcinoma by regulating cellular proliferation, migration and apoptosis. Mol Med Rep. 2015;13:1895–901.

    Article  PubMed  CAS  Google Scholar 

  152. Zheng M, Wu Z, Wu A, Huang Z, He N, Xie X. miRNA-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumor Biol. 2016;37:8599–607.

    Article  CAS  Google Scholar 

  153. Chu K, Gao G, Yang X, Ren S, Li Y, Wu H, et al. miRNA-512-5p induces apoptosis and inhibits glycolysis by targeting p21 in non-small cell lung cancer cells. Int J Oncol. 2015;48:1–10.

    Google Scholar 

  154. Lu Y, Wu D, Wang J, Li Y, Chai X, Kang Q. miRNA-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3. Biochem Biophys Res Commun. 2016;473:1315–20.

    Article  CAS  PubMed  Google Scholar 

  155. Guan H, Dai Z, Ma Y, Wang Z, Liu X, Wang X. MicroRNA-101 inhibits cell proliferation and induces apoptosis by targeting EYA1 in breast cancer. Int J Mol Med. 2016;37:1643–51.

    Article  CAS  PubMed  Google Scholar 

  156. Li M, Long C, Yang G, Luo Y, Du H. miRNA-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun. 2016;471:361–7.

    Article  CAS  PubMed  Google Scholar 

  157. Lin Z, Zhao J, Wang X, Zhu X, Gong L. Overexpression of microRNA-497 suppresses cell proliferation and induces apoptosis through targeting paired box 2 in human ovarian cancer. Oncol Rep. 2016;36:2101–7.

    Article  CAS  PubMed  Google Scholar 

  158. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.

    Article  CAS  PubMed  Google Scholar 

  159. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51:836–45.

    CAS  PubMed  Google Scholar 

  160. Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. 2009;284:31921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Huang P, Xi J, Liu S. miRNA-139-3p induces cell apoptosis and inhibits metastasis of cervical cancer by targeting NOB1. Biomed Pharmacother. 2016;83:850–6.

    Article  CAS  PubMed  Google Scholar 

  162. Niu J, Sun Y, Guo Q, Niu D, Liu B. miRNA-1 inhibits cell growth, migration, and invasion by targeting VEGFA in osteosarcoma cells. Dis Markers. 2016;2016:7068986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wang J, Zhang X, Shi J, Cao P, Wan M, Zhang Q, et al. Fatty acid synthase is a primary target of miRNA-15a and miRNA-16-1. Breast Cancer. 2016;7:1–11.

    Google Scholar 

  164. Wang T, Hou J, Li Z, Zheng Z, Wei J, Song D, et al. miRNA-15a-3p and miRNA-16-1-3p negatively regulate Twist1 to repress gastric cancer cell invasion and metastasis. Int J Biol Sci. 2017;13:122–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mogilyansky E, Clark P, Quann K, Zhou H, Londin E, Jing Y, et al. Post-transcriptional regulation of BRCA2 through interactions with miRNA-19a and miRNA-19b. Front Genet. 2016;7:1–16.

    Article  CAS  Google Scholar 

  166. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int BioMed Central. 2016;16:67.

    Article  CAS  Google Scholar 

  167. Kang H, Rho JG, Kim C, Tak H, Lee H, Ji E, et al. The miRNA-24-3p/p130Cas: a novel axis regulating the migration and invasion of cancer cells. Sci Rep. 2017;7:44847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sekimoto N, Suzuki A, Suzuki Y, Sugano S. Expression of miRNA-26a exhibits a negative correlation with HMGA1 and regulates cancer progression by targeting HMGA1 in lung adenocarcinoma cells. Mol Med Rep. 2017;15:534–42.

    Article  CAS  PubMed  Google Scholar 

  169. Bhardwaj A, Singh H, Rajapakshe K, Tachibana K. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative. Breast Cancer. 2017;8:19645–60.

    Google Scholar 

  170. Liu L, Bi N, Wu L, Ding X, Men Y, Zhou W, et al. MicroRNA-29c functions as a tumor suppressor by targeting VEGFA in lung adenocarcinoma. Mol Cancer. 2017;16:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Shu Y, Bao R, Jiang L, Wang Z, Wang X, Zhang F, et al. MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway. Cell Death Differ. 2017;24:445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, et al. Identification of miRNA-30b-3p and miRNA-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 2016;7:72593–607.

    PubMed  PubMed Central  Google Scholar 

  173. Zhang M, Gong W, Zuo B, Chu B, Tang Z, Zhang Y. The microRNA miRNA-33a suppresses IL-6-induced progression by binding Twist in gallbladder cancer tumor. Oncotarget. 2016;7:78640–52.

    PubMed  PubMed Central  Google Scholar 

  174. Li L, Wu C, Zhao Y. miRNA-34a enhances the sensitivity of gastric cancer cells to treatment with paclitaxel by targeting E2F5. Oncol Lett. 2017;13:4837–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Sato T, Shiba-ishii A, Kim Y, Dai T, Husni RE, Hong J, et al. miRNA-3941: a novel microRNA that controls IGBP1 expression and is associated with malignant progression of lung adenocarcinoma. Cancer Sci. 2017;108:536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tao W, Wang C, Sun Y, Su Y, Pang D, Zhang G. MicroRNA-34c suppresses breast cancer migration and invasion by targeting GIT1. J Cancer. 2016;7:1653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cioffi M, Trabulo SM, Vallespinos M, Raj D, Bou T, Lin M, et al. The miRNA-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget. 2017;8:21609–25.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wang L, Yao J, Sun H, He K, Tong D, Song T, et al. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A. Oncol Lett. 2017;13:329–38.

    Article  PubMed  CAS  Google Scholar 

  179. Xia H, Li Y, Lv X. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer. Int J Oncol. 2016;49:1325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang Y, Xing Q, Liu X, Guo Z, Li C, Sun G. MiRNA-122 targets VEGFC in bladder cancer to inhibit tumor growth and angiogenesis. Am J Transl Res. 2016;8:3056–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhao Y, Ling Z, Hao Y, Pang X, Han X, Joseph A. miRNA-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget. 2017;8:25005–20.

    PubMed  PubMed Central  Google Scholar 

  182. Wang Y, Chen L, Wu Z, Wang M, Jin F, Wang N, et al. miRNA-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer. 2016;16:826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Zhang Y, An J, Lv W, Lou T, Liu Y, Kang W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol Lett. 2016;12:5163–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. He L, Qu L, Wei L, Chen Y, Suo J. Reduction of miRNA-132-3p contributes to gastric cancer proliferation by targeting MUC13. Mol Med Rep. 2017;15:3055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sugiyama T, Taniguchi K, Matsuhashi N, Tajirika T, Futamura M, Takai T, et al. miRNA-133b inhibits growth of human gastric cancer cells by silencing PKM-splicer PTBP1. Cancer Sci. 2016;107:1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cheng Z, Liu F, Zhang H, Li X, Li Y. miRNA-135a inhibits tumor metastasis and angiogenesis by targeting FAK pathway. Oncotarget. 2017;8:31153–68.

    PubMed  PubMed Central  Google Scholar 

  187. Dong P, Xiong Y, Watari H, Hanley SJB, Konno Y, Ihira K, et al. miRNA-137 and miRNA-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. J Exp Clin Cancer Res. 2016;35:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Yonemori M, Seki N, Yoshino H, Matsushita R, Miyamoto K, Nakagawa M, et al. Dual tumor-suppressors miRNA-139-5p and miRNA-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci. 2016;107:1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Salem O, Erdem N, Jung J, Münstermann E, Wörner A, Wilhelm H, et al. The highly expressed 5’isomiRNA of hsa-miRNA-140-3p contributes to the tumor-suppressive effects of miRNA-140 by reducing breast cancer proliferation and migration. BMC Genomics. BMC Genom. 2016;17:566.

    Article  CAS  Google Scholar 

  190. Li P, Xu T, Zhou X, Liao L, Pang G, Luo W, et al. Cancer Med. 2017;6:662–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lu Y, Ji N, Wei W, Sun W, Gong X, Wang X. MiRNA-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α) in the tumor microenvironments. Biol Open. 2017;1:252–9.

    Article  CAS  Google Scholar 

  192. Wang F, Liu J, Zou Y, Jiao Y, Huang Y, Fan L. MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget. 2017;8:28711–24.

    PubMed  PubMed Central  Google Scholar 

  193. Chen Y, Min L, Ren C, Xu X, Yang J, Sun X, et al. MiRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One. 2017;12:1–17.

    Google Scholar 

  194. Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, et al. MiRNA-148a functions as a tumor suppressor by targeting CCK-BR via inactivating STAT3 and Akt in human gastric cancer. PLoS One. 2016;11:e0158961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Li CH, Yu TB, Qiu HW, Zhao XA, Zhou CL, Qi C. miRNA-150 is downregulated in osteosarcoma and suppresses cell proliferation, migration and invasion by targeting ROCK1. Oncol Lett. 2017;13:2191–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Yeh T, Huang T, Yeh T, Chen Y, Hsu K. miRNA-151-3p targets TWIST1 to repress migration of human breast cancer cells. PLoS One. 2017;11:e0168171.

    Article  CAS  Google Scholar 

  197. Lu S, Wang MS, Chen P, Ren Q, Bai P. miRNA-186 inhibits prostate cancer cell proliferation and tumor growth by targeting YY1 and CDK6. Exp Ther Med. 2017;13:3309–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Chen J, Gao S, Wang C, Wang Z, Zhang H, Huang K, et al. Pathologically decreased expression of miRNA-193a contributes to metastasis by targeting WT1-E-cadherin axis in non-small cell lung cancers. J Exp Clin Cancer Res. 2016;35:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Mamoori A, Wahab R, Islam F, Lee K, Vider J, Lu CT. Clinical and biological significance of miNA-193-3ap targeted KRAS in colorectal cancer pathogenesis. Hun. Pathol. 2008;145–56.

  200. Keßler J, Rot S, Bache M, Kappler M, Würl P, Vordermark D, et al. miR-199a-5p regulates HIF-1α and OSGIN2 and its expression is correlated to soft-tissue sarcoma patients’ outcome. Oncol Lett. 2016;12:5281–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Zhou M, Wang S, Hu L, Liu F, Zhang Q, Zhang D. miRNA-199a-5p suppresses human bladder cancer cell metastasis by targeting CCR7. BMC Urol. 2016;16:64. https://doi.org/10.1186/s12894-016-0181-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Chen S, Ma D, Chen Q, Zhang J, Tian Y, Wang Z, et al. MicroRNA-200a inhibits cell growth and metastasis by targeting Foxa2 in hepatocellular carcinoma. J Cancer. 2017;8:617–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Qiu M, Liang Z, Chen L, Tan G, Liu LEI, Wang K, et al. MicroRNA-200c suppresses cell growth and metastasis by targeting Bmi-1 and E2F3 in renal cancer cells. Exp Ther Med. 2017;13:1329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yang CH, Wang Y, Sims M, Cai C, He P. miRNA203 suppresses the expression of protumorigenic STAT1 in glioblastoma to inhibit tumorigenesis. Oncotarget. 2016;7:84017–29.

    PubMed  PubMed Central  Google Scholar 

  205. Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, et al. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 2012;7:e52397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chung TKH, Lau TS, Cheung TH, Yim SF, Lo KWK, Siu NSS, et al. Invasion of endometrial cancer by regulating FOXC1. Int J Cancer. 2012;130:1036–45.

    Article  CAS  PubMed  Google Scholar 

  207. Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. miRNA-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer. 2014;111:2316–27. https://doi.org/10.1038/bjc.2014.580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X, et al. A dual yet opposite growth-regulating function of miRNA-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget. 2015;6:7686–700.

    PubMed  PubMed Central  Google Scholar 

  209. Flores-pérez A, Ma LA, Rodríguez-cuevas S, Bautista-piña V, Hidalgo-Miranda A, Ocampo EA, et al. Dual targeting of ANGPT1 and TGFBR2 genes by miRNA-204 controls angiogenesis in breast cancer. Sci Rep. 2016. https://doi.org/10.1038/srep34504.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Yin Y, Zhang B, Wang W, Fei B, Quan C, Zhang J, et al. miRNA-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating RAB22A. Clin Cancer Res. 2014;20:6187–699.

    Article  CAS  PubMed  Google Scholar 

  211. Wu H, Zhu S, Mo YY. Supression of cell growth and invasion by miRNA-205 in breast cancer. Cell Res. 2009;439–48.

  212. Hu Y, Qiu Y, Yagüe E, Ji W, Liu J, Zhang J. miRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death Dis. 2016;7:e2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, et al. Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget. 2017;8:8162–72.

    PubMed  Google Scholar 

  214. Ilm K, Fuchs S, Mudduluru G, Stein U. MACC1 is post-transcriptionally regulated by miRNA-218 in colorectal cancer. Oncotarget. 2016;7:53443–58.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kumamoto T, Seki N, Mataki H, Mizuno K, Kamikawaji K, et al. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int J Oncol. 2016;49:1870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fu X, Li Y, Alvero A, Li J, Wu Q, Xiao Q. MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget. 2016;7:80633–54.

    PubMed  PubMed Central  Google Scholar 

  217. He Z, Yu L, Luo S, Li M, Li J, Li Q, et al. miRNA-296 inhibits the metastasis and epithelial-mesenchymal transition of colorectal cancer by targeting S100A4. BMC Cancer. 2017;17:140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Tadano T, Kakuta Y, Hamada S, Shimodaira Y, Kuroha M, Kawakami Y, et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6. World J Gastrointest Oncol. 2016;8:532.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Yang CX, Zhang SM, Li J, Yang B, Ouyang W, Mei ZJ, et al. MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting β-catenin. Oncol Lett. 2016;12:4983–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Press D. miRNA-320a inhibits tumor proliferation and invasion by targeting c-Myc in human hepatocellular carcinoma. Oncotargets Ther. 2017;10:885–94.

    Article  Google Scholar 

  221. Wang J, Shi C, Wang J, Cao LI, Zhong LI, Wang D. MicroRNA-320a is downregulated in non-small cell lung cancer and suppresses tumor cell growth and invasion by directly targeting insulin-like growth factor 1 receptor. Oncol Lett. 2017;13:3247–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Wang Y, Xu C, Wang Y, Zhang X. MicroRNA-365 inhibits ovarian cancer progression by targeting Wnt5a. Am J Cancer Res. 2017;7:1096–106.

    PubMed  PubMed Central  Google Scholar 

  223. Lian S, Park JS, Xia Y, Nguyen TT, Joo YE. MicroRNA-375 functions as a tumor-suppressor gene in gastric cancer by targeting. Int J Mol Sci. 2016;17:1633.

    Article  PubMed Central  CAS  Google Scholar 

  224. Li Z, Shen J, Chan MTV, Ka W, Wu K. MicroRNA-379 suppresses osteosarcoma progression by targeting PDK1. J Cell Mol Med. 2017;21:315–23.

    Article  CAS  PubMed  Google Scholar 

  225. Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, et al. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J Exp Clin Cancer Res. 2017;36:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Wang Y, Chen Y, Liu S, Ye Y. MiRNA-384 inhibits human colorectal cancer metastasis by targeting KRAS and CDC42. Oncotarget. 2016;7:84826–38.

    PubMed  PubMed Central  Google Scholar 

  227. Wang F, Wang J, Yang X, Chen D, Wang L. MiRNA-424-5p participates in esophageal squamous cell carcinoma invasion and metastasis via SMAD7 pathway mediated EMT. Diagn Pathol. 2016. https://doi.org/10.1186/s13000-016-0536-9.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 2017;8:e2572. https://doi.org/10.1038/cddis.2017.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Youness RA, El-tayebi HM, Assal RAMR, Hosny K, Esmat G, Abdelaziz AI. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc. Oncol Lett. 2016;12:2567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Fang C, Chen Y, Wu N, Yin J, Li X, Huang H-S, et al. MiRNA-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci Rep. 2017;7:40384. https://doi.org/10.1038/srep40384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tao Y, Han T, Zhang T, Ma C, Sun C. LncRNA CHRF-induced miRNA-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway. Oncotarget. 2017;8:36410–22.

    PubMed  PubMed Central  Google Scholar 

  232. Lin Y, Liu J, Huang Y. MicroRNA-489 plays an anti-metastatic role in human hepatocellular carcinoma by targeting matrix. Transl Oncol. 2017;10:211–20. https://doi.org/10.1016/j.tranon.2017.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Zhang B, Ji S, Ma F, Ma Q, Lu X, Chen X. miRNA-489 acts as a tumor suppressor in human gastric cancer by targeting PROX1. Am J Cancer Res. 2016;6:2021–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Qi Z, Cai S, Cai J, Chen L, Yao Y, Chen L, et al. miRNA-491 regulates glioma cells proliferation by targeting TRIM28 in vitro. BMC Neurol. 2016;16:248. https://doi.org/10.1186/s12883-016-0769-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Sun R, Liu Z, Tong D, Yang Y, Guo B, Wang X, et al. miRNA-491-5p, mediated by Foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis. 2017;8:e2714-12. https://doi.org/10.1038/cddis.2017.134.

    Article  Google Scholar 

  236. Zhan M, Yu X, Tang J, Zhou C, Wang C, Yin Q, et al. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis. 2017;8:e2529-11. https://doi.org/10.1038/cddis.2016.440.

    Article  CAS  Google Scholar 

  237. Wang H, Chen H. MicroRNA-495 inhibits gastric cancer cell migration and invasion possibly via targeting high mobility group AT-Hook 2 (HMGA2). Med Sci Monit. 2017;23:640–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Li J, Wei J, Mei Z, Yin Y, Li Y, Lu M, et al. Suppressing role of miRNA-520a-3p in breast cancer through CCND1 and CD44. Am J transl Res. 2017;9:146–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  239. Ho J, Hsu R, Wu C, Liao G, Gao H. Reduced miRNA-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853–68.

    PubMed  PubMed Central  Google Scholar 

  240. Qian K, Mao B, Zhang W, Chen H. MicroRNA-561 inhibits gastric cancer cell proliferation and invasion by downregulating c-Myc expression. Am J Transl Res. 2016;8:3802–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  241. Mutlu M, Saatci Ö, Ansari SA, Yurdusev E, Shehwana H, Konu Ö, et al. miRNA-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci Rep. 2016;6:32541. https://doi.org/10.1038/srep32541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Guo Y, Qi Y, Guo A, Du C, Zhang R, Chu X. miRNA-564 is downregulated in gastric carcinoma and targets E2F3. Oncol Lett. 2017;13:4155–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Zhang X, Jiang P, Shuai L, Chen K, Li Z, Zhang Y, et al. miRNA-589-5p inhibits MAP3K8 and suppresses CD90+ cancer stem cells in hepatocellular carcinoma. J Exp Clin Cancer Res. 2016;35:176. https://doi.org/10.1186/s13046-016-0452-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bayraktar R, Pichler M, Kanlikilicer P, Ivan C, Kahraman N, Aslan B, et al. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget. 2017;8:11641–58.

    Article  PubMed  Google Scholar 

  245. Yu H, Duan P, Zhu H, Rao D. miRNA-613 inhibits bladder cancer proliferation and migration through targeting SphK1. Am J Transl Res. 2017;9:1213–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  246. Wang Q, Selth LA, Callen DF. MiRNA-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4. Oncotarget. 2017;8:29914–24.

    PubMed  PubMed Central  Google Scholar 

  247. Zhang J, Xu Y, Gao Y, Chen C, Zheng Z, Yun M, et al. Decreased expression of miRNA-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer. 2017;16:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Ding D, Zhang Y, Yang R, Wang X, Ji G, Huo L, et al. miRNA-940 suppresses tumor cell invasion and migration via regulation of CXCR2 in hepatocellular carcinoma. Biomed Res Int. 2016;2016:7618342.

    PubMed  PubMed Central  Google Scholar 

  249. Rashed MH, Kanlikilicer P, Rodriguez-aguayo C, Bayraktar R, Bayraktar E, Ivan C, et al. Exosomal miRNA-940 maintains SRC-mediated oncogenic activity in cancer cells: a possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget. 2017;8:20145–64.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Liu M, Zhou K, Cao Y. MicroRNA-944 affects cell growth by targeting EPHA7 in non-small cell lung cancer. Int J Mol Sci. 2016;17:E1493.

    Article  PubMed  CAS  Google Scholar 

  251. Shan X, Wen W, Zhu D, Yan T, Cheng W, Huang Z. miRNA 1296-5p inhibits the migration and invasion of gastric cancer cells by repressing ERBB2 expression. PLoS One. 2017;12:e0170298.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Zhi T, Jiang K, Zhang C, Xu X, Wu W, Nie E, et al. MicroRNA-1301 inhibits proliferation of human glioma cells by directly targeting N-Ras. Am J Cancer Res. 2017;7:982–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  253. Kleemann M, Bereuther J, Fischer S, Marquart K, Hänle S, Unger K, et al. Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miRNA-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget. 2016;5:18773–91.

    Google Scholar 

  254. Lu M, Wang T, He M, Cheng W, Yan T. Tumor suppressor role of miRNA-3622b-5p in ERBB2-positive cancer. Oncotarget. 2017;8:23008–19.

    PubMed  PubMed Central  Google Scholar 

  255. Sun C, Li S, Zhang F, Zhang Y, Zuo Z, Xi Y, et al. The novel miRNA-9600 suppresses tumor progression and promotes paclitaxel sensitivity in non-small-cell lung cancer through altering STAT3 expression. Mol Ther Nucleic Acids. 2016;5:e387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hua Y, Chen H, Wang L, Wang F, Wang P, Ning Z, Li Y, Liu L, Chen Z, Meng Z. Low serum miRNA-373 predicts poor prognosis in patients with pancreatic cancer. Cancer Biomarkers. 2017;20:95–100.

    Article  CAS  PubMed  Google Scholar 

  257. Zheng S, Zhang X, Wang X, Li J. Downregulation of miRNA-138 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomarkers. 2017;20:49–54.

    Article  CAS  PubMed  Google Scholar 

  258. Fredsoe J, Rasmussen AKI, Thomsen AR, Mouritzen P, et al. Diagnostic and prognostic MicroRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus. 2017. https://doi.org/10.1016/j.euf.2017.02.018.

    Article  PubMed  Google Scholar 

  259. Zhang W, Ni M, Su Y, Wang H, Zhu S, Zhao A, et al. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur Urol Focus. 2016. https://doi.org/10.1016/j.euf.2016.09.007.

    Article  PubMed  Google Scholar 

  260. Ali HEA, Abdel Hameed R, Effat H, Ahmed EK, Atef AA, Sharawi SK, et al. Circulating microRNAs panel as a diagnostic tool for discrimination of HCV-associated hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2017;41:e51–62.

    Article  CAS  PubMed  Google Scholar 

  261. Jie T, Yun L, Kai L, Qian Z, Wei-hua Y, Liang-kun X. Exosomal miRNA-9-3p suppresses HBGF-5 expression and is a functional biomarker in hepatocellular carcinoma. Minerva Med. 2017;109:15–23.

    Google Scholar 

  262. Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng L, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 2017;16:132.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Salvianti F, Canu L, Poli G, Armignacco R, Scatena C, Cantini G, et al. New insights in the clinical and translational relevance of miRNA483-5p in adrenocortical cancer. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.19118.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Liang S, Zhang N, Deng Y, Chen L, Zhang Y, Zheng Z, et al. miRNA-663 promotes NPC cell proliferation by directly targeting CDKN2A. Mol Med Rep. 2017;16:6340–5.

    Article  CAS  Google Scholar 

  265. Zhu W, Qin W, Atasoy U, Sauter ER. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes. 2009;2:89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251:499–505.

    Article  PubMed  Google Scholar 

  267. Roth C, Rack B, Müller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12:R90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15:673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Wu Q, Lu Z, Li H, Lu J, Guo L, Ge Q. Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol. 2011;2011:1–7.

    Google Scholar 

  270. Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y, et al. Serum microRNA profiling and breast cancer risk: the use of miRNA-484/191 as endogenous controls. Carcinogenesis. 2012;33:828–34.

    Article  CAS  PubMed  Google Scholar 

  271. Ng EKO, Chong WWS, Jin H, Lam EKY, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  PubMed  Google Scholar 

  272. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26.

    Article  CAS  PubMed  Google Scholar 

  273. Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miRNA-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80.

    Article  CAS  PubMed  Google Scholar 

  274. Wang L-G, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012;36:e61–7.

    Article  CAS  PubMed  Google Scholar 

  275. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, et al. Circulating plasma MiRNA-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011;6:e17745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Nugent M, Miller N, Kerin MJ. Circulating miRNA-34a levels are reduced in colorectal cancer. J Surg Oncol. 2012;106:947–52.

    Article  CAS  PubMed  Google Scholar 

  277. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Zhou H, Guo J-M, Lou Y-R, Zhang X-J, Zhong F-D, Jiang Z, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J Mol Med. 2010;88:709–17.

    Article  CAS  PubMed  Google Scholar 

  279. Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, et al. Genome-wide microRNA profiles identify miRNA-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196–203.

    Article  CAS  PubMed  Google Scholar 

  280. Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, et al. Aberrant expression of miRNA-196a in gastric cancers and correlation with recurrence. Genes Chromosom Cancer. 2012;51:394–401.

    Article  CAS  PubMed  Google Scholar 

  281. Valladares-Ayerbes M, Reboredo M, Medina-Villaamil V, Iglesias-Díaz P, Lorenzo-Patiño MJ, Haz M, et al. Circulating miRNA-200c as a diagnostic and prognostic biomarker for gastric cancer. J Transl Med. 2012;10:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L, et al. Circulating miRNA-17-5p and miRNA-20a: molecular markers for gastric cancer. Mol Med Rep. 2012;5:1514–20.

    Article  CAS  PubMed  Google Scholar 

  283. Zheng Y, Cui L, Sun W, Zhou H, Yuan X, Huo M, et al. MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomark. 2011;10:71–7.

    Article  CAS  PubMed  Google Scholar 

  284. Gorur A, Balci Fidanci S, Dogruer Unal N, Ayaz L, Akbayir S, Yildirim Yaroglu H, et al. Determination of plasma microRNA for early detection of gastric cancer. Mol Biol Rep. 2013;40:2091–6.

    Article  CAS  PubMed  Google Scholar 

  285. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  286. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal MicroRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42–6.

    Article  CAS  PubMed  Google Scholar 

  287. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28:1721–6.

    Article  PubMed  Google Scholar 

  288. Heegaard NHH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer. 2012;130:1378–86.

    Article  CAS  PubMed  Google Scholar 

  289. Le HB, Zhu WY, Chen DD, He JY, Huang YY, Liu XG, et al. Evaluation of dynamic change of serum miRNA-21 and miRNA-24 in pre- and post-operative lung carcinoma patients. Med Oncol. 2012;29:3190–7.

    Article  CAS  PubMed  Google Scholar 

  290. Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res. 2009;2:807–13.

    Article  CAS  Google Scholar 

  291. Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le Q-T, et al. Circulating miRNA-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 2010;3:109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miRNA-200a/200b in association with elevated circulating miRNA-200a and miRNA-200b levels. Cancer Res. 2010;70:5226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, et al. Novel diagnostic value of circulating miRNA-18a in plasma of patients with pancreatic cancer. Br J Cancer. 2011;105:1733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Yamamoto Y, Kosaka N, Tanaka M, Koizumi F, Kanai Y, Mizutani T, et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers. 2009;14:529–38.

    Article  CAS  PubMed  Google Scholar 

  295. Li LM, Bin HuZ, Zhou ZX, Chen X, Liu FY, Zhang JF, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798–807.

    Article  CAS  PubMed  Google Scholar 

  296. Qi P, Cheng S, Wang H, Li N, Chen Y, Gao C. Serum MicroRNAs as biomarkers for hepatocellular carcinoma in chinese patients with chronic hepatitis B virus infection. PLoS One. 2011;6:e28486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Liu AM, Yao T-J, Wang W, Wong K-F, Lee NP, Fan ST, et al. Circulating miRNA-15b and miRNA-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open. 2012;2:e000825.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Sukata T, Sumida K, Kushida M, Ogata K, Miyata K, Yabushita S, et al. Circulating microRNAs, possible indicators of progress of rat hepatocarcinogenesis from early stages. Toxicol Lett. 2011;200:46–52.

    Article  CAS  PubMed  Google Scholar 

  299. Xu J, Wu C, Che X, Wang L, Yu D, Zhang T, et al. Circulating MicroRNAs, miRNA-21, miRNA-122, and miRNA-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011;50:136–42.

    Article  CAS  PubMed  Google Scholar 

  300. Hsu C-M, Lin P-M, Wang Y-M, Chen Z-J, Lin S-F, Yang M-Y. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol. 2012;33:1933–42.

    Article  CAS  PubMed  Google Scholar 

  301. Wong T-S, Ho W-K, Chan JY-W, Ng RW-M, Wei WI. Mature miRNA-184 and squamous cell carcinoma of the tongue. ScientificWorldJournal. 2009;9:130–2.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miRNA-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 2010;16:360–4.

    Article  PubMed  Google Scholar 

  303. Lin SC, Liu CJ, Lin JA, Chiang WF, Hung PS, Chang KW. miRNA-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol. 2010;46:204–8.

    Article  CAS  PubMed  Google Scholar 

  304. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  305. Fayyad-Kazan H, Bitar N, Najar M, Lewalle P, Fayyad-Kazan M, Badran R, et al. Circulating miRNA-150 and miRNA-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med. 2013;11:1.

    Article  CAS  Google Scholar 

  306. Jones CI, Zabolotskaya MV, King AJ, Stewart HJS, Horne GA, Chevassut TJ, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer. 2012;107:1987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Zheng C, Yinghao S, Li J. MiRNA-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol. 2012;29:815–22.

    Article  CAS  PubMed  Google Scholar 

  310. Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miRNA-21, miRNA-141, and miRNA-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32:583–8.

    Article  CAS  Google Scholar 

  311. Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stöppler H, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 2011;71:550–60.

    Article  CAS  PubMed  Google Scholar 

  312. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009;112:55–9.

    Article  CAS  PubMed  Google Scholar 

  313. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  CAS  PubMed  Google Scholar 

  314. Kan CW, Hahn MA, Gard GB, Maidens J, Huh JY, Marsh DJ, et al. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer. 2012;12:627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sun X, Li J, Sun Y, Zhang Y, Dong L, Shen C. miRNA-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget. 2016;7:53558–70.

    PubMed  PubMed Central  Google Scholar 

  317. Zhao C, Zhao Q, Zhang C, Wang G, Yao Y, Huang X, et al. miRNA-15b-5p resensitizes colon cancer cells to 5-fluorouracil by promoting apoptosis via the NF-κB/XIAP axis. Sci Rep. 2017;7:4194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Ao X, Nie P, Wu B, Xu W, Zhang T, Wang S, et al. Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis. 2016;7:e2463-12. https://doi.org/10.1038/cddis.2016.367.

    Article  CAS  Google Scholar 

  319. Zhu J, Zou Z, Nie P, Kou X, Wu B, Wang S, et al. Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis. 2016;7:e2454-13. https://doi.org/10.1038/cddis.2016.361.

    Article  Google Scholar 

  320. Meng F, Wang F, Wang L, Wong SCC, Cho WCS, Chan LWC. MiRNA-30a-5p overexpression may overcome EGFR-inhibitor resistance through regulating PI3K/AKT signaling pathway in non-small cell lung cancer cell lines. Front Genet. 2016;7:197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Ning Z, Lu H, Chen C, Wang L, Cai W, Li Y. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget. 2017;8:4572–81.

    PubMed  Google Scholar 

  322. Zhang Y, Xu W, Ni P, Li A, Zhou J, Xu S. miRNA-99a and miRNA-491 regulate cisplatin resistance in human gastric cancer cells by targeting CAPNS1. Oncotarget. 2016;12:1437–47.

    CAS  Google Scholar 

  323. Hao C, Xu X, Ma JIA, Xia JUN, Dai B, Liu L, et al. MicroRNA-124 regulates the radiosensitivity of non-small cell lung cancer cells by targeting TXNRD1. Oncol Lett. 2017;13:2071–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Yang D, Zhan M, Chen T, Chen W, Yunhe Z, Xu S, et al. miRNA-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep. 2017;7:43109.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Shuang T, Wang M, Zhou Y, Shi C, Wang D. NF-κB1, c-Rel, and ELK1 inhibit miRNA-134 expression leading to TAB1 upregulation in paclitaxel-resistant human ovarian cancer. Oncotarget. 2017;8:24853–68.

    PubMed  PubMed Central  Google Scholar 

  326. Gao M, Miao L, Liu M, Li C, Yu C, Yan H. miRNA-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget. 2016;7:59714–26.

    PubMed  PubMed Central  Google Scholar 

  327. Zeng J, Ma X, Wang L, Wang W, Zeng J, Wang L, et al. MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J Gastroenterol. 2017;23:2337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Zhao L, Li Y, Song X, Zhou H, Li N, Miao Y, et al. Upregulation of miRNA-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget. 2016;7:37.

    CAS  Google Scholar 

  329. Shen S, Pan JIE, Lu X, Chi P. Role of miRNA-196 and its target gene HoxB8 in the development and proliferation of human colorectal cancer and the impact of neoadjuvant chemotherapy with FOLFOX4 on their expression. Oncol Lett. 2016;196:4041–7.

    Article  CAS  Google Scholar 

  330. Zhong X, Zheng L, Shen J, Zhang D, Xiong M, Zhang Y, et al. Suppression of microRNA 200 family expression by oncogenic KRAS activation promotes cell survival and epithelial-mesenchymal transition in KRAS-driven cancer. Mol Cell Biol. 2016;36:2742–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Lee H, Kim C, Kang H, Tak H, Ahn S, Yoon SK, et al. microRNA-200a-3p increases 5-fl uorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med. 2017;49:e327-10. https://doi.org/10.1038/emm.2017.33.

    Article  CAS  Google Scholar 

  332. Shi Z, Wang L, Shen H, Jiang C, Ge X, Li D, et al. Downregulation of miRNA-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017;36:2577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Lu W, Hu Y, Ma Q, Zhou L, Jiang L, Li Z. miRNA-223 increases gallbladder cancer cell sensitivity to docetaxel by downregulating STMN1. Oncotarget. 2016;7:62364–76.

    PubMed  PubMed Central  Google Scholar 

  334. Gao Y, Chen X, Liu H. Up-regulation of miRNA-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression. Sci Rep. 2016;6:32972. https://doi.org/10.1038/srep32972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Zou J, Liu L, Wang Q, Yin F, Yang Z, Zhang W, et al. Downregulation of miRNA-429 contributes to the development of drug resistance in epithelial ovarian cancer by targeting ZEB1. Am J Transl Res. 2017;9:1357–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  336. Liu A, Zhu J, Wu G, Cao L, Tan Z, Zhang S, et al. Antagonizing miRNA-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Mol Cancer. 2017;6:106.

    Article  Google Scholar 

  337. Tian J, Xu Y, Li L, Hao Q. MiRNA-490-3p sensitizes ovarian cancer cells to cisplatin by directly targeting ABCC2. Am J Transl Res. 2017;9:1127–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  338. Shen B. miRNA-590-5p regulates gastric cancer cell growth and chemosensitivity through RECK and the AKT/ERK pathway. Oncotargets Ther. 2016;9:6009–19.

    Article  CAS  Google Scholar 

  339. Zhao H, Yu X, Ding Y, Zhao J, Wang G, Wu X. MiRNA-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2. Oncotarget. 2016;7:33.

    Google Scholar 

  340. Chen W, Yang Y, Zhang Z, An Q, Li N, Liu W, et al. MiRNA-1307 promotes ovarian cancer cell chemoresistance by targeting the ING5 expression. J Ovarian Res. 2017;11:1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hardeep Singh Tuli or Anupam Bishayee.

Ethics declarations

Conflict of interest

DK, HST, VKG, NG and AB declare no conflict of interest.

Funding

The authors declare that this work is not supported by any funding agency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, D., Tuli, H.S., Garg, V.K. et al. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 22, 179–201 (2018). https://doi.org/10.1007/s40291-018-0316-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0316-1

Navigation