Skip to main content
Log in

Neuronal Ceroid Lipofuscinosis: Potential for Targeted Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schulz A, Kohlschütter A, Mink J, Simonati A, Williams R. NCL diseases—clinical perspectives. Biochim Biophys Acta. 2013;1832:1801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Donsante A, Boulis NM. Progress in gene and cell therapies for the neuronal ceroid lipofuscinoses. Expert Opin Biol Ther. 2018;18:755–64. https://doi.org/10.1080/14712598.2018.1492544.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol. 2019;15:161–78. https://doi.org/10.1038/s41582-019-0138-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and Emerging Treatment Strategies for Neuronal Ceroid Lipofuscinoses. CNS Drugs. 2019;33:315–25. https://doi.org/10.1007/s40263-019-00620-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov. 2018;17:133–50. http://www.nature.com/articles/nrd.2017.214

  6. Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2019;1866:165570.

    Google Scholar 

  7. Rakheja D, Bennett MJ. Neuronal ceroid-lipofuscinoses. In: E. Gilbert-Barness, L.A. Barness, P.M: Farrell. Metabolic diseases: foundations of clinical management, genetics, and pathology. IOS Press BV, Amsterdam, The Netherlands, pp 499–510, 2017.

  8. Glees P, Hasan M. Lipofuscin in neuronal aging and diseases. Norm Pathol Anat (Stuttg). 1976;32:1–68.

    CAS  PubMed  Google Scholar 

  9. Cooper JD. The neuronal ceroid lipofuscinoses: the same, but different? Biochem Soc Trans. 2010;38:1448–52. https://portlandpress.com/biochemsoctrans/article/38/6/1448/90180/The-neuronal-ceroid-lipofuscinoses-the-same-but

  10. Palmer DN, Martinus RD, Cooper SM, Midwinter GG, Reid JC, Jolly RD. Ovine ceroid lipofuscinosis The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem. 1989;264:5736–40.

    CAS  PubMed  Google Scholar 

  11. Tyynelä J, Palmer DN, Baumann M, Haltia M. Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett. 1993;330:8–12. https://doi.org/10.1016/0014-5793(93)80908-d.

    Article  PubMed  Google Scholar 

  12. Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Cell Res. 2009;1793:697–709.

    CAS  Google Scholar 

  13. Anderson GW, Goebel HH, Simonati A. Human pathology in NCL. Biochim Biophys Acta Mol Basis Dis. 2013;1832:1807–26. https://doi.org/10.1016/j.bbadis.2012.11.014.

    Article  CAS  Google Scholar 

  14. Mole S, Haltia M. The neuronal ceroid-lipofuscinoses (batten disease). In: Rosenberg R, Pascual J, editors. Rosenberg’s molecular and genetic basis of neurological and psychiatric disease. 5th ed. Boston: Academic Press; 2015a. p. 793–808.

    Google Scholar 

  15. Cardona F, Rosati E. Neuronal ceroid-lipofuscinoses in Italy: an epidemiological study. Am J Med Genet. 1995;57:142–3. https://doi.org/10.1002/ajmg.1320570206.

    Article  CAS  PubMed  Google Scholar 

  16. Augestad LB, Diderichsen J. Nevronale ceroide lipofuscinoser (Neuronal ceroid lipofuscinoses). Tidsskr Nor Laegeforen. 2006;126:1908–10.

    PubMed  Google Scholar 

  17. Sondhi D, Crystal R, Kaminsky S. Gene therapy for inborn errors of metabolism: batten disease. In: Tuszynski M, editor. Translational neuroscience: fundamental approaches for neurological disorders. Boston: SpringerUS; 2016a. p. 111–29.

    Google Scholar 

  18. Mole SE, Anderson G, Band HA, Berkovic SF, Cooper JD, Kleine Holthaus S-M, et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 2019;18:107–16.

    PubMed  Google Scholar 

  19. Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for batten disease: current treatments and future prospects. Nat Rev Neurol. 2019;15:161–78. http://www.nature.com/articles/s41582-019-0138-8

  20. Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005;6:107–26. https://doi.org/10.1007/s10048-005-0218-3.

    Article  PubMed  Google Scholar 

  21. Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci. 2011;68:453–74. https://doi.org/10.1007/s00018-010-0468-6.

    Article  CAS  PubMed  Google Scholar 

  22. Cárcel-Trullols J, Kovács AD, Pearce DA. Cell biology of the NCL proteins: what they do and don’t do. Biochem Biophys Acta. 2015;1852:2242–55. https://doi.org/10.1016/j.bbadis.2015.04.027.

    Article  CAS  PubMed  Google Scholar 

  23. Nita DA, Mole SE, Minassian BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016;18:73–88. https://doi.org/10.1684/epd.2016.0844.

    Article  PubMed  Google Scholar 

  24. Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, et al. The neuronal ceroid lipofuscinoses: opportunities from model systems. Biochem Biophys Acta. 2015;1852:2267–78. https://doi.org/10.1016/j.bbadis.2015.04.022.

    Article  CAS  PubMed  Google Scholar 

  25. Neverman NJ, Best HL, Hofmann SL, Hughes SM. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis. 2015;1852:2292–300.

    CAS  Google Scholar 

  26. Tarczyluk MA, Cooper JD. Investigative and emerging treatments for batten disease. Expert Opin Orphan Drugs. 2015;3:1031–45. https://doi.org/10.1517/21678707.2015.1073148.

    Article  CAS  Google Scholar 

  27. Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for neuronal ceroid lipofuscinosis. Orphanet J Rare Dis. 2016;11:40. https://doi.org/10.1186/s13023-016-0414-2.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grisolia M, Sestito S, Ceravolo F, Invernizzi F, Salpietro V, Polizzi A, et al. The neuronal ceroid lipofuscinoses: a case-based overview. J Pediatr Biochem. 2016;6:60–5. https://doi.org/10.1055/s-0036-1582222.

    Article  Google Scholar 

  29. Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs. 2017;5:727–40. https://doi.org/10.1080/21678707.2017.1360182.

    Article  Google Scholar 

  30. Kleine Holthaus SM, Smith AJ, Mole SE, Ali RR. Gene therapy approaches to treat the neurodegeneration and visual failure in neuronal ceroid lipofuscinoses. Adv Exp Med Biol. 2018;1074:91–9. https://doi.org/10.1007/978-3-319-75402-4_12.

    Article  CAS  PubMed  Google Scholar 

  31. Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017;28:988–1003. https://doi.org/10.1089/hum.2017.160.

    Article  CAS  PubMed  Google Scholar 

  32. Byrne BJ. Safety first: perspective on patient-centered development of AAV gene therapy products. Mol Ther. 2018;26:669–71. https://doi.org/10.1016/j.ymthe.2018.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mink JW, Augustine EF, Adams HR, Marshall FJ, Kwon JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28:1101–5. https://doi.org/10.1177/0883073813494268.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Palmer DN, Barry LA, Tyynelä J, Cooper JD. NCL disease mechanisms. Biochim Biophys Acta Mol Basis Dis. 2013;1832:1882–93.

    CAS  Google Scholar 

  35. Haltia M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol. 2003;62:1–13. https://doi.org/10.1093/jnen/62.1.1.

    Article  PubMed  Google Scholar 

  36. Kousi M, Lehesjoki A-E, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012;33:42–63. https://doi.org/10.1002/humu.21624.

    Article  CAS  PubMed  Google Scholar 

  37. Parviainen L, Dihanich S, Anderson GW, Wong AM, Brooks HR, Abeti R, et al. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Commun. 2017;5:74. https://doi.org/10.1186/s40478-017-0476-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lange J, Haslett LJ, Lloyd-Evans E, Pocock JM, Sands MS, Williams BP, et al. Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun. 2018;6:74. https://doi.org/10.1186/s40478-018-0575-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooper JD, Mole SE. Future perspectives: what lies ahead for Neuronal Ceroid Lipofuscinosis research? Biochim Biophys Acta Mol Basis Dis. 2020;1866:165681.

    CAS  PubMed  Google Scholar 

  40. Levine AS, Lemieux B, Brunning R, White JG, Sharp HL, Stadlan E, et al. Ceroid accumulation in a patient with progressive neurological disease. Pediatrics. 1968;42:583–91.

    CAS  PubMed  Google Scholar 

  41. Cotman SL, Staropoli JF. The juvenile Batten disease protein, CLN3, and its role in regulating anterograde and retrograde post-Golgi trafficking. Clin Lipidol. 2012;7:79–91. https://doi.org/10.2217/clp.11.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fietz M, AlSayed M, Burke D, Cohen-Pfeffer J, Cooper JD, Dvořáková L, et al. Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): expert recommendations for early detection and laboratory diagnosis. Mol Genet Metab. 2016;119:160–7.

    CAS  PubMed  Google Scholar 

  43. Trivisano M, Specchio N. Red flags for neuronal ceroid lipofuscinosis type 2 disease. Dev Med Child Neurol. 2020;62:414. https://doi.org/10.1111/dmcn.14389.

    Article  PubMed  Google Scholar 

  44. Sondhi D, Rosenberg JB, Van de Graaf BG, Kaminsky SM, Crystal RG. Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs. 2013;1:951–75. https://doi.org/10.1517/21678707.2013.852081.

    Article  CAS  Google Scholar 

  45. Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: Useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull. 2012;88:43–57.

    CAS  PubMed  Google Scholar 

  46. Markham A. Cerliponase alfa: first global approval. Drugs. 2017;77:1247–9. https://doi.org/10.1007/s40265-017-0771-8.

    Article  CAS  PubMed  Google Scholar 

  47. Schulz A, Ajayi T, Specchio N, de Los RE, Gissen P, Ballon D, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med. 2018;378:1898–907. https://doi.org/10.1056/NEJMoa1712649.

    Article  CAS  PubMed  Google Scholar 

  48. US Food and Drug Administration. FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. 2019. https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease. Accessed 24 May 2019.

  49. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20:e3015. https://doi.org/10.1002/jgm.3015.

    Article  PubMed  Google Scholar 

  50. Desnick RJ, Schuchman EH. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genom Hum Genet. 2012;13:307–35. https://doi.org/10.1146/annurev-genom-090711-163739.

    Article  CAS  Google Scholar 

  51. Giugliani R, Vairo F, Kubaski F, Poswar F, Riegel M, Baldo G, et al. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. Lancet Child Adolesc Health. 2018;2:56–68. https://doi.org/10.1016/S2352-4642(17)30087-1.

    Article  PubMed  Google Scholar 

  52. Solomon M, Muro S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev. 2017;118:109–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kruer MC, Pearce DA, Orchard PJ, Steiner RD. Prospects for stem cell therapy in neuronal ceroid lipofuscinosis. Regen Med. 2013;8:527–9. https://doi.org/10.2217/rme.13.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kauss V, Dambrova M, Medina DL. Pharmacological approaches to tackle NCLs. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165553.

    CAS  PubMed  Google Scholar 

  55. Kim S-J, Zhang Z, Sarkar C, Tsai P-C, Lee Y-C, Dye L, et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin Investig. 2008;118:3075–86. http://www.jci.org/articles/view/33482

  56. Santavuori P, Haltia M, Rapola J, Raitta C. Infantile type of so-called neuronal ceroid-lipofuscinosis. J Neurol Sci. 1973;18:257–67.

    CAS  PubMed  Google Scholar 

  57. Ramadan H, Al-Din AS, Ismail A, Balen F, Varma A, Twomey A, et al. Adult neuronal ceroid lipofuscinosis caused by deficiency in palmitoyl protein thioesterase 1. Neurology. 2007;68:387–8. https://doi.org/10.1212/01.wnl.0000252825.85947.2f.

    Article  CAS  PubMed  Google Scholar 

  58. Jeung H, Thomann PA, Wolf RC. Novel gene variations in early-onset frontotemporal dementia with positive family history of neural ceroid lipofuscinosis-1. Neurol Clin Pract. 2015;5:484–7. https://doi.org/10.1212/CPJ.0000000000000134.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Delague V, Bareil C, Bouvagnet P, Salem N, Chouery E, Loiselet J, et al. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34-9qter in a large consanguineous lebanese family. Ann Neurol. 2001;50:250–3. https://doi.org/10.1002/ana.1286.

    Article  CAS  PubMed  Google Scholar 

  60. Hu J, Lu J-Y, Wong AMS, Hynan LS, Birnbaum SG, Yilmaz DS, et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl–protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2012;107:213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu J-Y, Nelvagal HR, Wang L, Birnbaum SG, Cooper JD, Hofmann SL. Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2015;116:98–105.

    CAS  PubMed  Google Scholar 

  62. Tamaki SJ, Jacobs Y, Dohse M, Capela A, Cooper JD, Reitsma M, et al. Neuroprotection of Host Cells by Human Central Nervous System Stem Cells in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. Cell Stem Cell. 2009;5:310–9.

    CAS  PubMed  Google Scholar 

  63. Selden NR, Al-Uzri A, Huhn SL, Koch TK, Sikora DM, Nguyen-Driver MD, et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr. 2013;11:643–52. https://thejns.org/view/journals/j-neurosurg-pediatr/11/6/article-p643.xml

  64. Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs. 2019;7:473–500. https://doi.org/10.1080/21678707.2019.1684258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griffey M, Bible E, Vogler C, Levy B, Gupta P, Cooper J, et al. Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis. 2004;16:360–9. https://doi.org/10.1016/j.nbd.2004.03.005.

    Article  CAS  PubMed  Google Scholar 

  66. Griffey MA, Wozniak D, Wong M, Bible E, Johnson K, Rothman SM, et al. CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther. 2006;13:538–47. https://doi.org/10.1016/j.ymthe.2005.11.008.

    Article  CAS  PubMed  Google Scholar 

  67. Shyng C, Nelvagal HR, Dearborn JT, Tyynelä J, Schmidt RE, Sands MS, et al. Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci. 2017;114:E5920–9. https://doi.org/10.1073/pnas.1701832114.

    Article  CAS  PubMed  Google Scholar 

  68. Macauley SL, Roberts MS, Wong AM, McSloy F, Reddy AS, Cooper JD, et al. Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Ann Neurol. 2012;71:797–804. https://doi.org/10.1002/ana.23545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roberts MS, Macauley SL, Wong AM, Yilmas D, Hohm S, Cooper JD, et al. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J Inherit Metab Dis. 2012;35:847–57. https://doi.org/10.1007/s10545-011-9446-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Griffey M, Macauley SL, Ogilvie JM, Sands MS. AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther. 2005;12:413–21. https://doi.org/10.1016/j.ymthe.2005.04.018.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Z, Butler JD, Levin SW, Wisniewski KE, Brooks SS, Mukherjee AB. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat Med. 2001;7:478–84. http://www.nature.com/articles/nm0401_478

  72. Klawe C, Maschke M. Flupirtine: pharmacology and clinical applications of a nonopioid analgesic and potentially neuroprotective compound. Expert Opin Pharmacother. 2009;10:1495–500. https://doi.org/10.1517/14656560902988528.

    Article  CAS  PubMed  Google Scholar 

  73. Gavin M, Wen GY, Messing J, Adelman S, Logush A, Jenkins EC, et al. Substrate reduction therapy in four patients with milder CLN1 mutations and juvenile-onset batten disease using cysteamine bitartrate. JIMD Rep. 2013;11:87–92. https://doi.org/10.1007/8904_2013_226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Levin SW, Baker EH, Zein WM, Zhang Z, Quezado ZMN, Miao N, et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol. 2014;13:777–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Groh J, Berve K, Martini R. Fingolimod and teriflunomide attenuate neurodegeneration in mouse models of neuronal ceroid lipofuscinosis. Mol Ther. 2017;25:1889–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kinarivala N, Trippier PC. Progress in the development of small molecule therapeutics for the treatment of neuronal ceroid lipofuscinoses (NCLs). J Med Chem. 2016;59:4415–27. https://doi.org/10.1021/acs.jmedchem.5b01020.

    Article  CAS  PubMed  Google Scholar 

  77. Dhar S, Bitting RL, Rylova SN, Jansen PJ, Lockhart E, Koeberl DD, et al. Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic CLN3- and CLN2-deficient neurons. Ann Neurol. 2002;51:448–66. https://doi.org/10.1002/ana.10143.

    Article  CAS  PubMed  Google Scholar 

  78. Makoukji J, Saadeh F, Mansour KA, El-Sitt S, Al Ali J, Kinarivala N, et al. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann Clin Transl Neurol. 2018;5:1089–103. https://doi.org/10.1002/acn3.625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, et al. Association of mutations in a lysosomal protein with classical late- infantile neuronal ceroid lipofuscinosis. Science. 1997;277:1802–5. https://doi.org/10.1126/science.277.5333.1802.

    Article  CAS  PubMed  Google Scholar 

  80. Steinfeld R, Heim P, von Gregory H, Meyer K, Ullrich K, Goebel HH, et al. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet. 2002;112:347–54. https://doi.org/10.1002/ajmg.10660.

    Article  PubMed  Google Scholar 

  81. Williams RE, Adams HR, Blohm M, Cohen-Pfeffer JL, de los Reyes E, Denecke J, et al. Management Strategies for CLN2 Disease. Pediatr Neurol. 2017;69:102–12.

    PubMed  Google Scholar 

  82. Nickel M, Simonati A, Jacoby D, Lezius S, Kilian D, Van de Graaf B, et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational cohort study. Lancet Child Adolesc Heal. 2018;2:582–90.

    Google Scholar 

  83. Dyke JP, Sondhi D, Voss HU, Yohay K, Hollmann C, Mancenido D, et al. Brain region-specific degeneration with disease progression in late infantile neuronal ceroid lipofuscinosis (CLN2 Disease). AJNR Am J Neuroradiol. 2016;37:1160–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dyke JP, Voss HU, Sondhi D, Kaminsky SM, Blatteis J, Heier L, et al. Asymptotic neurodegeneration in CLN2 disease assessed by MRI cortical thickness histograms. Mol Genet Metab. 2018;2:S41. https://doi.org/10.1016/j.ymgme.2017.12.088.

    Article  Google Scholar 

  85. Fischer A. FDA approves first treatment for a form of batten disease. FDA News Release. 2017. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-form-batten-disease. Accessed 28 Mar 2018.

  86. Schulz A, Specchio N, Gissen P, de los Reyes E, Cahan H, Slasor P, et al. Persistent treatment effect of cerliponase alfa in children with CLN2 disease: a 3 year update from an ongoing multicenter extension study. Neuropediatrics. 2019;50:S1–55.

    Google Scholar 

  87. Cherukuri A, Cahan H, de Hart G, Van Tuyl A, Slasor P, Bray L, et al. Immunogenicity to cerliponase alfa intracerebroventricular enzyme replacement therapy for CLN2 disease: results from a Phase 1/2 study. Clin Immunol. 2018;197:68–76.

    CAS  PubMed  Google Scholar 

  88. Wiseman JA, Meng Y, Nemtsova Y, Matteson PG, Millonig JH, Moore DF, et al. Chronic enzyme replacement to the brain of a late infantile neuronal ceroid lipofuscinosis mouse has differential effects on phenotypes of disease. Mol Ther Methods Clin Dev. 2017;4:204–12. https://doi.org/10.1016/j.omtm.2017.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Katz ML, Coates JR, Sibigtroth CM, Taylor JD, Carpentier M, Young WM, et al. Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). J Neurosci Res. 2014;92:1591–8. https://doi.org/10.1002/jnr.23423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sinclair J, Whiting R, Robinson G, Bibi K, Nguyen A, Cherukuri A, et al. Intravitreal enzyme replacement therapy attenuates retinal disease progression in a canine model of neuronal ceroid lipofuscinosis type 2 (CLN2). Mol Genet Metab. 2018;123:S132. https://doi.org/10.1016/j.ymgme.2017.12.360.

    Article  Google Scholar 

  91. Tracy CJ, Whiting REH, Pearce JW, Williamson BG, Vansteenkiste DP, Gillespie LE, et al. Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res. 2016;152:77–87. https://doi.org/10.1016/j.exer.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  92. Sondhi D, Crystal RG, Kaminsky SM. Gene therapy for inborn errors of metabolism: batten disease. In: Tuszynsku M, editor. Translational neuroscience: fundamental approaches for neurological disorders. Boston: Springer US; 2016b. p. 111–29.

    Google Scholar 

  93. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19:463–74. https://doi.org/10.1089/hum.2008.022.

    Article  CAS  PubMed  Google Scholar 

  94. Souweidane MM, Fraser JF, Arkin LM, Sondhi D, Hackett NR, Kaminsky SM, et al. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr. 2010;6:115–22. https://thejns.org/view/journals/j-neurosurg-pediatr/6/2/article-p115.xml

  95. Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM, et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther. 2007;15:481–91. https://doi.org/10.1038/sj.mt.6300049.

    Article  CAS  PubMed  Google Scholar 

  96. Haskell RE, Hughes SM, Chiorini JA, Alisky JM, Davidson BL. Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, TPP-1 to the mouse central nervous system. Gene Ther. 2003;10:34–42. https://doi.org/10.1038/sj.gt.3301843.

    Article  CAS  PubMed  Google Scholar 

  97. Passini MA, Dodge JC, Bu J, Yang W, Zhao Q, Sondhi D, et al. Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci. 2006;26:1334–42. https://doi.org/10.1523/JNEUROSCI.2676-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sondhi D, Johnson L, Purpura K, Monette S, Souweidane MM, Kaplitt MG, et al. Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Methods. 2012;23:324–35. https://doi.org/10.1089/hgtb.2012.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sondhi D, Peterson DA, Edelstein AM, del Fierro K, Hackett NR, Crystal RG. Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp Neurol. 2008;213:18–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Katz ML, Tecedor L, Chen Y, Williamson BG, Lysenko E, Wininger FA, et al. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of batten disease. Sci Transl Med. 2015;7:313ra18. https://doi.org/10.1126/scitranslmed.aac6191.

    Article  CAS  Google Scholar 

  101. Ghosh A, Rangasamy SB, Modi KK, Pahan K. Gemfibrozil, food and drug administration-approved lipid-lowering drug, increases longevity in mouse model of late infantile neuronal ceroid lipofuscinosis. J Neurochem. 2017;141:423–35. https://doi.org/10.1111/jnc.13987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim K, Kleinman HK, Lee H-J, Pahan K. Safety and potential efficacy of gemfibrozil as a supportive treatment for children with late infantile neuronal ceroid lipofuscinosis and other lipid storage disorders. Orphanet J Rare Dis. 2017;12:113. https://doi.org/10.1186/s13023-017-0663-8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Golabek AA, Kida E, Walus M, Kaczmarski W, Michalewski M, Wisniewski KE. CLN3 Protein regulates lysosomal ph and alters intracellular processing of Alzheimer’s amyloid-β protein precursor and cathepsin D in human cells. Mol Genet Metab. 2000;70:203–13.

    CAS  PubMed  Google Scholar 

  104. Holopainen JM, Saarikoski J, Kinnunen PKJ, Järvelä I. Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur J Biochem. 2001;268:5851–6. https://doi.org/10.1046/j.0014-2956.2001.02530.x.

    Article  CAS  PubMed  Google Scholar 

  105. Ramirez-Montealegre D, Pearce DA. Defective lysosomal arginine transport in juvenile batten disease. Hum Mol Genet. 2005;14:3759–73. http://academic.oup.com/hmg/article/14/23/3759/559493/Defective-lysosomal-arginine-transport-in-juvenile

  106. Wu D, Liu J, Wu B, Tu B, Zhu W, Luo J. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin. Biochem Biophys Res Commun. 2014;447:115–20. https://doi.org/10.1016/j.bbrc.2014.03.120.

    Article  CAS  PubMed  Google Scholar 

  107. Yasa S, Modica G, Sauvageau E, Kaleem A, Hermey G, Lefrancois S. CLN3 regulates endosomal function by modulating Rab7A–effector interactions. J Cell Sci. 2020;133:234047. https://doi.org/10.1242/jcs.234047.

    Article  CAS  Google Scholar 

  108. Marshall FJ, de Blieck EA, Mink JW, Dure L, Adams H, Messing S, et al. A clinical rating scale for batten disease: reliable and relevant for clinical trials. Neurology. 2005;65:275–9. https://doi.org/10.1212/01.wnl.0000169019.41332.8a.

    Article  CAS  PubMed  Google Scholar 

  109. Pérez-Poyato M-S, MilàRecansens M, FerrerAbizanda I, MonteroSánchez R, Rodríguez-Revenga L, CusíSánchez V, et al. Juvenile neuronal ceroid lipofuscinosis: clinical course and genetic studies in Spanish patients. J Inherit Metab Dis. 2011;34:1083–93. https://doi.org/10.1007/s10545-011-9323-7.

    Article  PubMed  Google Scholar 

  110. Ostergaard J. Juvenile neuronal ceroid lipofuscinosis (batten disease): current insights. Degener Neurol Neuromuscul Dis. 2016;6:73–83. https://www.dovepress.com/juvenile-neuronal-ceroid-lipofuscinosis-batten-disease-current-insight-peer-reviewed-article-DNND

  111. Kuper WFE, Van Alfen C, Van Eck L, Huijgen BCH, Nieuwenhuis EES, Van Brussel M, et al. Motor function impairment is an early sign of CLN3 disease. Neurology. 2019;93:e293–7. https://doi.org/10.1212/WNL.0000000000007773.

    Article  CAS  PubMed  Google Scholar 

  112. Mole S, Haltia M. Rosenberg’s Molecular and genetic basis of neurological and psychiatric disease (fifth edition). In: Rosenberg R, Pascual J, editors. The neuronal ceroid-lipofuscinoses (batten disease). Boston: Academic Press; 2015b. p. 793–808.

    Google Scholar 

  113. Wright GA, Georgiou M, Robson AG, Ali N, Kalhoro A, Holthaus SK, et al. Juvenile batten disease (CLN3): detailed ocular phenotype, novel observations, delayed diagnosis, masquerades, and prospects for therapy. Ophthalmol Retin. 2020;4:433–45. https://linkinghub.elsevier.com/retrieve/pii/S2468653019306293

  114. U.S. National Library of Medicine. ClinicalTrials.gov. NCT03770572: Gene Transfer Study of AAV9-CLN3 for Treatment NCL Type 3.https://clinicaltrials.gov/ct2/show/NCT03770572 . Accessed 25 Mar 2020.

  115. Wiley LA, Burnight ER, Drack AV, Banach BB, Ochoa D, Cranston CM, et al. Using patient-specific induced pluripotent stem cells and wild-type mice to develop a gene augmentation-based strategy to treat CLN3-associated retinal degeneration. Hum Gene Ther. 2016;27:835–46. https://doi.org/10.1089/hum.2016.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, et al. CRISPR-Cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res. 2018;65:28–49. https://doi.org/10.1016/j.preteyeres.2018.03.003.

    Article  CAS  PubMed  Google Scholar 

  117. Sondhi D, Scott EC, Chen A, Hackett NR, Wong AMS, Kubiak A, et al. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene. Hum Gene Ther. 2014;25:223–39. https://doi.org/10.1089/hum.2012.253.

    Article  CAS  PubMed  Google Scholar 

  118. Bosch ME, Aldrich A, Fallet R, Odvody J, Burkovetskaya M, Schuberth K, et al. Self-complementary AAV9 gene delivery partially corrects pathology associated with juvenile neuronal ceroid lipofuscinosis (CLN3). J Neurosci. 2016;36:9669–82. https://doi.org/10.1523/JNEUROSCI.1635-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aldrich A, Bosch ME, Fallet R, Odvody J, Burkovetskaya M, Rama Rao KV, et al. Efficacy of phosphodiesterase-4 inhibitors in juvenile Batten disease (CLN3). Ann Neurol. 2016;80:909–23. https://doi.org/10.1002/ana.24815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kovács AD, Pearce DA. Attenuation of AMPA receptor activity improves motor skills in a mouse model of juvenile batten disease. Exp Neurol. 2008;209:288–91. https://doi.org/10.1016/j.expneurol.2007.09.012.

    Article  CAS  PubMed  Google Scholar 

  121. Cialone J, Augustine EF, Newhouse N, Adams H, Vierhile A, Marshall FJ, et al. Parent-reported benefits of flupirtine in juvenile neuronal ceroid lipofuscinosis (batten disease; CLN3) are not supported by quantitative data. J Inherit Metab Dis. 2011;34:1075–81. https://doi.org/10.1007/s10545-011-9346-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;8:14338. http://www.nature.com/articles/ncomms14338

  123. Åberg L, Talling M, Härkönen T, Lönnqvist T, Knip M, Alen R, et al. Intermittent prednisolone and autoantibodies to GAD65 in juvenile neuronal ceroid lipofuscinosis. Neurology. 2008;70:1218–20. https://doi.org/10.1212/01.wnl.0000307753.88839.29.

    Article  PubMed  Google Scholar 

  124. Mitchison HM, Bernard DJ, Greene NDE, Cooper JD, Junaid MA, Pullarkat RK, et al. Targeted disruption of the Cln3 gene provides a mouse model for batten disease. Neurobiol Dis. 1999;6:321–34. https://doi.org/10.1006/nbdi.1999.0267.

    Article  CAS  PubMed  Google Scholar 

  125. Chattopadhyay S. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder batten disease. Hum Mol Genet. 2002;11:1421–31. https://doi.org/10.1093/hmg/11.12.1421.

    Article  CAS  PubMed  Google Scholar 

  126. Seehafer SS, Ramirez-Montealegre D, Wong AMS, Chan C-H, Castaneda J, Horak M, et al. Immunosuppression alters disease severity in juvenile batten disease mice. J Neuroimmunol. 2011;230:169–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Augustine EF, Beck CA, Adams HR, Defendorf S, Vierhile A, Timm D, et al. Short-term administration of mycophenolate is well-tolerated in CLN3 disease (juvenile neuronal ceroid lipofuscinosis). JIMD Rep. 2019;43:117–24. https://doi.org/10.1007/8904_2018_113.

    Article  PubMed  Google Scholar 

  128. Adams HR, Defendorf S, Vierhile A, Mink JW, Marshall FJ, Augustine EF. A novel, hybrid, single- and multi-site clinical trial design for CLN3 disease, an ultra-rare lysosomal storage disorder. Clin Trials. 2019;16:555–60. https://doi.org/10.1177/1740774519855715.

    Article  PubMed  Google Scholar 

  129. Chang J-W, Choi H, Cotman SL, Jung Y-K. Lithium rescues the impaired autophagy process in CbCln3Δex7/8/Δex7/8 cerebellar cells and reduces neuronal vulnerability to cell death via IMPase inhibition. J Neurochem. 2011;116:659–68. https://doi.org/10.1111/j.1471-4159.2010.07158.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170:1101–11. https://rupress.org/jcb/article/170/7/1101/51862/Lithium-induces-autophagy-by-inhibiting-inositol

  131. Drack AV, Mullins RF, Pfeifer WL, Augustine EF, Stasheff SF, Hong SD. Immunosuppressive treatment for retinal degeneration in juvenile neuronal ceroid lipofuscinosis (juvenile Batten disease). Ophthalmic Genet. 2015;36:359–64. https://doi.org/10.3109/13816810.2014.886271.

    Article  CAS  PubMed  Google Scholar 

  132. Berkovic SF, Carpenter S, Andermann F, Andermann E, Wolfe LS. Kufs’ disease: a critical reappraisal. Brain. 1988;111:27–62. https://doi.org/10.1093/brain/111.1.27.

    Article  PubMed  Google Scholar 

  133. Nijssen PCG, Ceuterick C, Diggelen OP, Elleder M, Martin J-J, Teepen JLJM, et al. Autosomal dominant adult neuronal ceroid lipofuscinosis: a novel form of NCL with granular osmiophilic deposits without palmitoyl protein thioesterase 1 deficiency. Brain Pathol. 2006;13:574–81. https://doi.org/10.1111/j.1750-3639.2003.tb00486.x.

    Article  Google Scholar 

  134. Arsov T, Smith KR, Damiano J, Franceschetti S, Canafoglia L, Bromhead CJ, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88:566–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Henderson MX, Wirak GS, Zhang Y, Dai F, Ginsberg SD, Dolzhanskaya N, et al. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 2016;131:621–37. https://doi.org/10.1007/s00401-015-1512-2.

    Article  CAS  PubMed  Google Scholar 

  136. Santavuori P, Rapola J, Sainio K, Raitta C. A variant of Jansky–Bielschowsky disease. Neuropediatrics. 1982;13:135–41. https://doi.org/10.1055/s-2008-1059612.

    Article  CAS  PubMed  Google Scholar 

  137. Simonati A, Williams RE, Nardocci N, Laine M, Battini R, Schulz A, et al. Phenotype and natural history of variant late infantile ceroid-lipofuscinosis 5. Dev Med Child Neurol. 2017;59:815–21. https://doi.org/10.1111/dmcn.13473.

    Article  PubMed  Google Scholar 

  138. Hughes SM, Hope KM, Xu JB, Mitchell NL, Palmer DN. Inhibition of storage pathology in prenatal CLN5-deficient sheep neural cultures by lentiviral gene therapy. Neurobiol Dis. 2014;62:543–50.

    CAS  PubMed  Google Scholar 

  139. Palmer DN, Neverman NJ, Chen JZ, Chang C-T, Houweling PJ, Barry LA, et al. Recent studies of ovine neuronal ceroid lipofuscinoses from BARN, the batten animal research network. Biochim Biophys Acta Mol Basis Dis. 2015;1852:2279–86.

    CAS  Google Scholar 

  140. Mitchell NL, Russell KN, Wellby MP, Wicky HE, Schoderboeck L, Barrell GK, et al. Longitudinal in vivo monitoring of the CNS demonstrates the efficacy of gene therapy in a sheep model of CLN5 Batten disease. Mol Ther. 2018;26:2366–78. https://doi.org/10.1016/j.ymthe.2018.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Neurogene Inc. FDA Grants orphan drug designation to Neurogene’s gene therapy for the treatment of CLN5 Batten disease, 2020. https://www.neurogene.com/press-releases/fda-grants-orphan-drug-designation-to-neurogenes-gene-therapy-for-the-treatment-of-cln5-batten-disease/. Accessed 7 July 2020

  142. Sharp JD, Wheeler RB, Parker KA, Gardiner RM, Williams RE, Mole SE. Spectrum of CLN6 mutations in variant late infantile neuronal ceroid lipofuscinosis. Hum Mutat. 2003;22:35–42. https://doi.org/10.1002/humu.10227.

    Article  CAS  PubMed  Google Scholar 

  143. Heine C, Koch B, Storch S, Kohlschütter A, Palmer DN, Braulke T. Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A. J Biol Chem. 2004;279:22347–52. https://doi.org/10.1074/jbc.M400643200.

    Article  CAS  PubMed  Google Scholar 

  144. Gao H, Boustany R-MN, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, et al. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2002;70:324–35.

    CAS  PubMed  Google Scholar 

  145. U.S. National Library of Medicine. ClinicalTrials.gov. NCT02725580: Batten CLN6 Gene Therapy. https://clinicaltrials.gov/ct2/show/NCT02725580. Accessed 13 Apr 2020.

  146. Amicus Therapeutics. Amicus establishes gene therapy pipeline for lysosomal storage disorders (LSDs). https://ir.amicusrx.com/static-files/c62086c7-1aae-4e0e-83d2-1a2e4ebc65cc. Accessed 20 Sep 2018.

  147. Mirza M, Volz C, Karlstetter M, Langiu M, Somogyi A, Ruonala MO, et al. Progressive retinal degeneration and glial activation in the CLN6nclf mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation. PLoS ONE. 2013;8:e75963. https://doi.org/10.1371/journal.pone.0075963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kleine Holthaus S-M, Ribeiro J, Abelleira-Hervas L, Pearson RA, Duran Y, Georgiadis A, et al. Prevention of photoreceptor cell loss in a Cln6 mouse model of Batten disease requires CLN6 gene transfer to bipolar cells. Mol Ther. 2018;26:1343–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kleine Holthaus S-M, Herranz-Martin S, Massaro G, Aristorena M, Hoke J, Hughes MP, et al. Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease. Hum Mol Genet. 2019;28:3867–79. https://academic.oup.com/hmg/article/28/23/3867/5559951

  150. Cain JT, Likhite S, White KA, Timm DJ, Davis SS, Johnson TB, et al. Gene therapy corrects brain and behavioral pathologies in CLN6-Batten disease. Mol Ther. 2019;27:1836–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Mitchell N. Longitudinal studies and the development of gene therapy for ovine neuronal ceroid lipofuscinoses 2016. New Zealand: University of Otago; 2016.

    Google Scholar 

  152. Kay GW, Palmer DN. Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression. J Neuroinflammation. 2013;10:97. https://doi.org/10.1186/1742-2094-10-97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kousi M, Siintola E, Dvorakova L, Vlaskova H, Turnbull J, Topcu M, et al. Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain. 2009;132:810–9. https://doi.org/10.1093/brain/awn366.

    Article  PubMed  Google Scholar 

  154. Topçu M, Tan H, Yalnizoǧlu D, Usubütün A, Saatçi I, Aynaci M, et al. Evaluation of 36 patients from Turkey with neuronal ceroid lipofuscinosis: clinical, neurophysiological, neuroradiological and histopathologic studies. Turk J Pediatr. 2004;46:1–10.

    PubMed  Google Scholar 

  155. Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med. 2019;381:1644–52. https://doi.org/10.1056/NEJMoa1813279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Luzio JP. CLN8 safeguards lysosome biogenesis. Nat Cell Biol. 2018;20:1333–5. http://www.nature.com/articles/s41556-018-0240-y

  157. di Ronza A, Bajaj L, Sharma J, Sanagasetti D, Lotfi P, Adamski CJ, et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat Cell Biol. 2018;20:1370–7. https://doi.org/10.1038/s41556-018-0228-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mitchell WA, Wheeler RB, Sharp JD, Bate SL, Gardiner RM, Ranta US, et al. Turkish variant late infantile neuronal ceroid lipofuscinosis (CLN7) may be allelic to CLN8. Eur J Paediatr Neurol. 2001;5:21–7.

    PubMed  Google Scholar 

  159. Ranta S, Lehesjoki AE. Northern epilepsy, a new member of the NCL family. Neurol Sci. 2000;21:S43–7. https://doi.org/10.1007/s100720070039.

    Article  CAS  PubMed  Google Scholar 

  160. Deeg HJ, Shulman HM, Albrechtsen D, Graham TC, Storb R, Koppang N. Batten’s disease: failure of allogeneic bone marrow transplantation to arrest disease progression in a canine model. Clin Genet. 1990;37:264–70. https://doi.org/10.1111/j.1399-0004.1990.tb04188.x.

    Article  CAS  PubMed  Google Scholar 

  161. Elger B, Schneider M, Winter E, Carvelli L, Bonomi M, Fracasso C, et al. Optimized synthesis of AMPA receptor antagonist ZK 187638 and neurobehavioral activity in a mouse model of neuronal ceroid lipofuscinosis. ChemMedChem. 2006;1:1142–8. https://doi.org/10.1002/cmdc.200600144.

    Article  CAS  PubMed  Google Scholar 

  162. Cooper JD, Messer A, Feng AK, Chua-Couzens J, Mobley WC. Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment. J Neurosci. 1999;19:2556–67. https://doi.org/10.1523/JNEUROSCI.19-07-02556.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schulz A, Dhar S, Rylova S, Dbaibo G, Alroy J, Hagel C, et al. Impaired cell adhesion and apoptosis in a novel CLN9 Batten disease variant. Ann Neurol. 2004;56:342–50. https://doi.org/10.1002/ana.20187.

    Article  CAS  PubMed  Google Scholar 

  164. Schulz A, Mousallem T, Venkataramani M, Persaud-Sawin D-A, Zucker A, Luberto C, et al. The CLN9 protein, a regulator of dihydroceramide synthase. J Biol Chem. 2006;281:2784–94. https://doi.org/10.1074/jbc.M509483200.

    Article  CAS  PubMed  Google Scholar 

  165. Norman RM, Wood N. A congenital form of amaurotic family idiocy. J Neurol Psychiatry. 1941;4:175–90. https://doi.org/10.1136/jnnp.4.3-4.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brown NJ, Corner BD, Dodgson MCH. A second case in the same family of congenital familial cerebral lipoidosis resembling amaurotic family idiocy. Arch Dis Child. 1954;29:48–54. https://doi.org/10.1136/adc.29.143.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Humphreys S, Lake BD, Scholtz CL. Congenital amaurotic idiocy—a pathological, histochemical, biochemical and ultrastructural study. Neuropathol Appl Neurobiol. 1985;11:475–84. https://doi.org/10.1111/j.1365-2990.1985.tb00041.x.

    Article  CAS  PubMed  Google Scholar 

  168. Barohn RJ, Dowd DC, Kagan-Hallet KS. Congenital ceroid-lipofuscinosis. Pediatr Neurol. 1992;8:54–9. https://doi.org/10.1016/0887-8994(92)90054-3.

    Article  CAS  PubMed  Google Scholar 

  169. Siintola E, Partanen S, Strömme P, Haapanen A, Haltia M, Maehlen J, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129:1438–45. https://doi.org/10.1093/brain/awl107.

    Article  PubMed  Google Scholar 

  170. Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Brück W, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78:988–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hersheson J, Burke D, Clayton R, Anderson G, Jacques TS, Mills P, et al. Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology. 2014;83:1873–5. https://doi.org/10.1212/WNL.0000000000000981.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shevtsova Z, Garrido M, Weishaupt J, Saftig P, Bähr M, Lühder F, et al. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. Am J Pathol. 2010;177:271–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Pike LS, Tannous BA, Deliolanis NC, Hsich G, Morse D, Tung CH, et al. Imaging gene delivery in a mouse model of congenital neuronal ceroid lipofuscinosis. Gene Ther. 2011;18:1173–8. https://doi.org/10.1038/gt.2011.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Almeida MR, Macário MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging. 2016;41:200.e1-e5. https://doi.org/10.1016/j.neurobiolaging.2016.02.019.

    Article  CAS  Google Scholar 

  175. Kamate M, Detroja M, Hattiholi V. Neuronal ceroid lipofuscinosis type-11 in an adolescent. Brain Dev. 2019;41:542–5. https://doi.org/10.1016/j.braindev.2019.03.004.

    Article  PubMed  Google Scholar 

  176. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90:1102–7. https://doi.org/10.1016/j.ajhg.2012.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Huin V, Barbier M, Bottani A, Lobrinus JA, Clot F, Lamari F, et al. Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain. 2020;143:303–19. https://doi.org/10.1093/brain/awz377.

    Article  PubMed  Google Scholar 

  178. Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177:311–24. https://doi.org/10.2353/ajpath.2010.090915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Arrant AE, Onyilo VC, Unger DE, Roberson ED. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018;38:2341–58. https://doi.org/10.1523/JNEUROSCI.3081-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Prevail Therapeutics Inc., Prevail therapeutics granted composition of matter patent for experimental gene therapy program PR006. Gene Therapy is Being Developed for the Treatment of Frontotemporal Dementia patients with GRN Mutations, 2020. https://www.globenewswire.com/news-release/2020/07/27/2068187/0/en/Prevail-Therapeutics-Granted-Composition-of-Matter-Patent-for-Experimental-Gene-Therapy-Program-PR006.html

  181. Amado DA, Rieders JM, Diatta F, Hernandez-Con P, Singer A, Mak JT, et al. AAV-mediated progranulin delivery to a mouse model of progranulin deficiency causes T cell-mediated toxicity. Mol Ther. 2019;27:465–78.

    CAS  PubMed  Google Scholar 

  182. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21:2646–50. https://doi.org/10.1093/hmg/dds089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tsunemi T, Hamada K, Krainc D. ATP13A2/PARK9 regulates secretion of exosomes and -synuclein. J Neurosci. 2014;34:15281–7. https://doi.org/10.1523/JNEUROSCI.1629-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Farias FHG, Zeng R, Johnson GS, Wininger FA, Taylor JF, Schnabel RD, et al. A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis. 2011;42:468–74.

    CAS  PubMed  Google Scholar 

  185. Wöhlke A, Philipp U, Bock P, Beineke A, Lichtner P, Meitinger T, et al. A one base pair deletion in the canine ATP13A2 gene causes exon skipping and late-onset neuronal ceroid lipofuscinosis in the Tibetan terrier. PLoS Genet. 2011;7:e1002304. https://doi.org/10.1371/journal.pgen.1002304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Smith KR, Dahl H-HM, Canafoglia L, Andermann E, Damiano J, Morbin M, et al. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22:1417–23. https://doi.org/10.1093/hmg/dds558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang C, Xu H, Yuan Y, Lian Y, Xie N, Ming L. Novel compound heterozygous mutations causing Kufs disease type B. Int J Neurosci. 2018;128:573–6. https://doi.org/10.1080/00207454.2017.1403439.

    Article  CAS  PubMed  Google Scholar 

  188. Van Bogaert P, Azizieh R, Désir J, Aeby A, De Meirleir L, Laes J-F, et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 2007;61:579–86. https://doi.org/10.1002/ana.21121.

    Article  CAS  PubMed  Google Scholar 

  189. Moen MN, Fjær R, Hamdani EH, Laerdahl JK, Menchini RJ, Vigeland MD, et al. Pathogenic variants in KCTD7 perturb neuronal K + fluxes and glutamine transport. Brain. 2016;139:3109–20. https://doi.org/10.1093/brain/aww244.

    Article  PubMed  Google Scholar 

  190. Metz KA, Teng X, Coppens I, Lamb HM, Wagner BE, Rosenfeld JA, et al. KCTD7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann Neurol. 2018;84:766–80. https://doi.org/10.1002/ana.25351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Staropoli JF, Karaa A, Lim ET, Kirby A, Elbalalesy N, Romansky SG, et al. A Homozygous Mutation in KCTD7 Links Neuronal Ceroid Lipofuscinosis to the Ubiquitin-Proteasome System. Am J Hum Genet. 2012;91:202–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M, et al. Proteomic Analysis of Brain and Cerebrospinal Fluid from the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Potential Biomarkers. J Proteome Res. 2017;16:3787–804. https://doi.org/10.1021/acs.jproteome.7b00460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sima N, Li R, Huang W, Xu M, Beers J, Zou J, et al. Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses. Orphanet J Rare Dis. 2018;13:54. https://doi.org/10.1186/s13023-018-0798-2.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.

    CAS  PubMed  Google Scholar 

  195. Rosenberg JB, Kaplitt MG, De BP, Chen A, Flagiello T, Salami C, et al. AAVrh.10-Mediated APOE2 Central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev. 2018;29:24–47. https://doi.org/10.1089/humc.2017.231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today. 2019;24:949–54. https://doi.org/10.1016/j.drudis.2019.01.019.

    Article  PubMed  Google Scholar 

  197. Galvin N, Vogler C, Levy B, Kovacs A, Griffey M, Sands MS. A murine model of infantile neuronal ceroid lipofuscinosis—ultrastructural evaluation of storage in the central nervous system and viscera. Pediatr Dev Pathol. 2008;11:185–92. https://doi.org/10.2350/07-03-0242.1.

    Article  PubMed  Google Scholar 

  198. Ostergaard JR. Paroxysmal sympathetic hyperactivity in Juvenile neuronal ceroid lipofuscinosis (Batten disease). Auton Neurosci. 2018;214:15–8. https://doi.org/10.1016/j.autneu.2018.07.003.

    Article  PubMed  Google Scholar 

  199. Katz ML, Johnson GC, Leach SB, Williamson BG, Coates JR, Whiting REH, et al. Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression. Gene Ther. 2017;24:215–23. https://doi.org/10.1038/gt.2017.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ostergaard JR, Rasmussen TB, Molgaard H. Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology. 2011;76:1245–51. https://doi.org/10.1212/WNL.0b013e31821435bd.

    Article  CAS  PubMed  Google Scholar 

  201. Rietdorf K, Coode EE, Schulz A, Wibbeler E, Bootman MD, Ostergaard JR. Cardiac pathology in neuronal ceroid lipofuscinoses (NCL): more than a mere co-morbidity. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165643.

    CAS  PubMed  Google Scholar 

  202. Dozières-Puyravel B, Nasser H, Elmaleh-Bergès M, Lopez Hernandez E, Gelot A, Ilea A, et al. Paediatric-onset neuronal ceroid lipofuscinosis: first symptoms and presentation at diagnosis. Dev Med Child Neurol. 2020;62:528–30. https://doi.org/10.1111/dmcn.14346.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

English text editing was provided by Dr. David Macari. Paolo Curatolo participated in the EPISTOP study (https://www.epistop.eu) funded under the European Community's 7th Framework Program under Grant Agreement no. 602391

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Specchio.

Ethics declarations

Funding

No funding was received to assist with the preparation of this manuscript.

Conflict of interest

NS has received support from Biomarin, and Amicus, and has served as a paid consultant for Livanova, Biomarin; PC has served as a paid consultant for Novartis; FV has served as paid consultant for Zogenix, Eisai, GW Pharma, Biomarin; MT has served as paid consultant for Biomarin; all other authors report no conflict of interest.

Ethics approval

Not applicable for Review articles.

Consent to participate

Not applicable for Review articles.

Consent for publication

Not applicable for Review articles.

Availability of data and material

Not applicable for Review articles.

Code availability

Not applicable for Review articles.

Author contributions

NS and AF made substantial contributions to the conception and design of the work; and the acquisition, analysis, and interpretation of data and drafted the work; MT, NP, CP, CC, AS made substantial contributions to the conception and design of the work; and the acquisition, analysis, and interpretation of data; MT, SL, PR, PC revised the manuscript critically for important intellectual content; FV revised the manuscript critically for important intellectual content and acted as senior coordinator of the work. All authors approved the version to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Specchio, N., Ferretti, A., Trivisano, M. et al. Neuronal Ceroid Lipofuscinosis: Potential for Targeted Therapy. Drugs 81, 101–123 (2021). https://doi.org/10.1007/s40265-020-01440-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01440-7

Navigation