Skip to main content

Advertisement

Log in

Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    Article  CAS  PubMed  Google Scholar 

  2. Goebel HH, Mole S, Lake BD (1999) The neuronal ceroid lipofuscinoses (Batten Disease). IOS Press, Amsterdam, Netherlands

    Google Scholar 

  3. Mole SE, Williams RE, Goebel HH (2005) Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 6:107–126

    Article  PubMed  Google Scholar 

  4. Cooper JD, Russell C, Mitchison HM (2006) Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1762:873–889

    CAS  PubMed  Google Scholar 

  5. Lu JY, Hu J, Hofmann SL (2010) Human recombinant palmitoyl-protein thioesterase-1 (PPT1) for preclinical evaluation of enzyme replacement therapy for infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 99:374–378

    Article  CAS  PubMed  Google Scholar 

  6. Chang M, Cooper JD, Sleat DE, Cheng SH, Dodge JC, Passini MA, Lobel P, Davidson BL (2008) Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 16:649–656

    Article  CAS  PubMed  Google Scholar 

  7. Griffey MA, Wozniak D, Wong M, Bible E, Johnson K, Rothman SM, Wentz AE, Cooper JD, Sands MS (2006) CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther 13:538–547

    Article  CAS  PubMed  Google Scholar 

  8. Passini MA, Dodge JC, Bu J, Yang W, Zhao Q, Sondhi D, Hackett NR, Kaminsky SM, Mao Q, Shihabuddin LS, Cheng SH, Sleat DE, Stewart GR, Davidson BL, Lobel P, Crystal RG (2006) Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci 26:1334–1342

    Article  CAS  PubMed  Google Scholar 

  9. Tamaki SJ, Jacobs Y, Dohse M, Capela A, Cooper JD, Reitsma M, He D, Tushinski R, Belichenko PV, Salehi A, Mobley W, Gage FH, Huhn S, Tsukamoto AS, Weissman IL, Uchida N (2009) Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 5:310–319

    Article  CAS  PubMed  Google Scholar 

  10. Palmer DN, Jolly RD, van Mil HC, Tyynela J, Westlake VJ (1997) Different patterns of hydrophobic protein storage in different forms of neuronal ceroid lipofuscinosis (NCL, Batten disease). Neuropediatrics 28:45–48

    Article  CAS  PubMed  Google Scholar 

  11. Palmer DN, Fearnley IM, Walker JE, Hall NA, Lake BD, Wolfe LS, Haltia M, Martinus RD, Jolly RD (1992) Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet 42:561–567

    Article  CAS  PubMed  Google Scholar 

  12. Seehafer SS, Pearce DA (2006) You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 27:576–588

    Article  CAS  PubMed  Google Scholar 

  13. Siintola E, Partanen S, Stromme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki AE, Tyynela J (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129:1438–1445

    Article  PubMed  Google Scholar 

  14. Phillips SN, Muzaffar N, Codlin S, Korey CA, Taschner PE, de Voer G, Mole SE, Pearce DA (2006) Characterizing pathogenic processes in Batten disease: use of small eukaryotic model systems. Biochim Biophys Acta 1762:906–919

    CAS  PubMed  Google Scholar 

  15. Zaidi N, Maurer A, Nieke S, Kalbacher H (2008) Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun 376:5–9

    Article  CAS  PubMed  Google Scholar 

  16. Benes P, Vetvicka V, Fusek M (2008) Cathepsin D–many functions of one aspartic protease. Crit Rev Oncol Hematol 68:12–28

    Article  PubMed  Google Scholar 

  17. Ramirez-Montealegre D, Rothberg PG, Pearce DA (2006) Another disorder finds its gene. Brain 129:1353–1356

    Article  PubMed  Google Scholar 

  18. Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, Saftig P, Gartner J (2006) Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet 78:988–998

    Article  CAS  PubMed  Google Scholar 

  19. Awano T, Katz ML, O’Brien DP, Taylor JF, Evans J, Khan S, Sohar I, Lobel P, Johnson GS (2006) A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab 87:341–348

    Article  CAS  PubMed  Google Scholar 

  20. Myllykangas L, Tyynela J, Page-McCaw A, Rubin GM, Haltia MJ, Feany MB (2005) Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses. Neurobiol Dis 19:194–199

    Article  CAS  PubMed  Google Scholar 

  21. Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, Haltia M, Lobel P (2000) A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J 19:2786–2792

    Article  CAS  PubMed  Google Scholar 

  22. Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S, Waguri S, Momoi T, Kominami E, Peters C, Figura K, Saftig P, Uchiyama Y (2003) Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci 22:146–161

    Article  CAS  PubMed  Google Scholar 

  23. Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, Schulz-Schaeffer W, Watanabe T, Waguri S, Kametaka S, Shibata M, Yamamoto K, Kominami E, Peters C, von Figura K, Uchiyama Y (2000) Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 20:6898–6906

    CAS  PubMed  Google Scholar 

  24. Shevtsova Z, Garrido M, Weishaupt J, Saftig P, Bahr M, Luhder F, Kugler S (2010) CNS-Expressed Cathepsin D Prevents Lymphopenia in a Murine Model of Congenital Neuronal Ceroid Lipofuscinosis. Am J Pathol doi:10.2353/ajpath.2010.091267[25]

  25. Masson O, Bach AS, Derocq D, Prebois C, Laurent-Matha V, Pattingre S, Liaudet-Coopman E (2010) Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? Biochimie doi:10.1016/j.biochi.2010.05.009

  26. Kenessey A, Nacharaju P, Ko LW, Yen SH (1997) Degradation of tau by lysosomal enzyme cathepsin D: implication for Alzheimer neurofibrillary degeneration. J Neurochem 69:2026–2038

    Article  CAS  PubMed  Google Scholar 

  27. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schutze S (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563

    Article  CAS  PubMed  Google Scholar 

  28. Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, Koster A, Hess B, Evers M, von Figura K, Peters C (1995) Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 14:3599–3608

    CAS  PubMed  Google Scholar 

  29. Sagulenko V, Muth D, Sagulenko E, Paffhausen T, Schwab M, Westermann F (2008) Cathepsin D protects human neuroblastoma cells from doxorubicin-induced cell death. Carcinogenesis 29:1869–1877

    Article  CAS  PubMed  Google Scholar 

  30. Johansson AC, Steen H, Ollinger K, Roberg K (2003) Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 10:1253–1259

    Article  CAS  PubMed  Google Scholar 

  31. Schestkowa O, Geisel D, Jacob R, Hasilik A (2007) The catalytically inactive precursor of cathepsin D induces apoptosis in human fibroblasts and HeLa cells. J Cell Biochem 101:1558–1566

    Article  CAS  PubMed  Google Scholar 

  32. Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, Haltia M, Lobel P (2001) Congenital ovine neuronal ceroid lipofuscinosis–a cathepsin D deficiency with increased levels of the inactive enzyme. Eur J Paediatr Neurol 5(Suppl A):43–45

    Article  PubMed  Google Scholar 

  33. Walls KC, Klocke BJ, Saftig P, Shibata M, Uchiyama Y, Roth KA, Shacka JJ (2007) Altered regulation of phosphatidylinositol 3-kinase signaling in cathepsin D-deficient brain. Autophagy 3:222–229

    CAS  PubMed  Google Scholar 

  34. Haidar B, Kiss RS, Sarov-Blat L, Brunet R, Harder C, McPherson R, Marcel YL (2006) Cathepsin D, a lysosomal protease, regulates ABCA1-mediated lipid efflux. J Biol Chem 281:39971–39981

    Article  CAS  PubMed  Google Scholar 

  35. Wang MD, Franklin V, Sundaram M, Kiss RS, Ho K, Gallant M, Marcel YL (2007) Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages. J Biol Chem 282:22525–22533

    Article  CAS  PubMed  Google Scholar 

  36. Jabs S, Quitsch A, Kakela R, Koch B, Tyynela J, Brade H, Glatzel M, Walkley S, Saftig P, Vanier MT, Braulke T (2008) Accumulation of bis(monoacylglycero)phosphate and gangliosides in mouse models of neuronal ceroid lipofuscinosis. J Neurochem 106:1415–1425

    Article  CAS  PubMed  Google Scholar 

  37. Mutka AL, Haapanen A, Kakela R, Lindfors M, Wright AK, Inkinen T, Hermansson M, Rokka A, Corthals G, Jauhiainen M, Gillingwater TH, Ikonen E, Tyynela J (2010) Murine cathepsin D deficiency is associated with dysmyelination/myelin disruption and accumulation of cholesteryl esters in the brain. J Neurochem 112:193–203

    Article  CAS  PubMed  Google Scholar 

  38. el-Husseini Ael D, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3:791–802

    Article  CAS  Google Scholar 

  39. Mitchison HM, Hofmann SL, Becerra CH, Munroe PB, Lake BD, Crow YJ, Stephenson JB, Williams RE, Hofman IL, Taschner PE, Martin JJ, Philippart M, Andermann E, Andermann F, Mole SE, Gardiner RM, O’Rawe AM (1998) Mutations in the palmitoyl-protein thioesterase gene (PPT; CLN1) causing juvenile neuronal ceroid lipofuscinosis with granular osmiophilic deposits. Hum Mol Genet 7:291–297

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann SL, Das AK, Yi W, Lu JY, Wisniewski KE (1999) Genotype-phenotype correlations in neuronal ceroid lipofuscinosis due to palmitoyl-protein thioesterase deficiency. Mol Genet Metab 66:234–239

    Article  CAS  PubMed  Google Scholar 

  41. Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376:584–587

    Article  CAS  PubMed  Google Scholar 

  42. Camp LA, Verkruyse LA, Afendis SJ, Slaughter CA, Hofmann SL (1994) Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem 269:23212–23219

    CAS  PubMed  Google Scholar 

  43. Sleat DE, Sohar I, Lackland H, Majercak J, Lobel P (1996) Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis. J Biol Chem 271:19191–19198

    Article  CAS  PubMed  Google Scholar 

  44. Hofmann SL, Atashband A, Cho SK, Das AK, Gupta P, Lu JY (2002) Neuronal ceroid lipofuscinoses caused by defects in soluble lysosomal enzymes (CLN1 and CLN2). Curr Mol Med 2:423–437

    Article  CAS  PubMed  Google Scholar 

  45. Das AK, Lu JY, Hofmann SL (2001) Biochemical analysis of mutations in palmitoyl-protein thioesterase causing infantile and late-onset forms of neuronal ceroid lipofuscinosis. Hum Mol Genet 10:1431–1439

    Article  CAS  PubMed  Google Scholar 

  46. Mazzei R, Conforti FL, Magariello A, Bravaccio C, Militerni R, Gabriele AL, Sampaolo S, Patitucci A, Di Iorio G, Muglia M, Quattrone A (2002) A novel mutation in the CLN1 gene in a patient with juvenile neuronal ceroid lipofuscinosis. J Neurol 249:1398–1400

    Article  CAS  PubMed  Google Scholar 

  47. Kalviainen R, Eriksson K, Losekoot M, Sorri I, Harvima I, Santavuori P, Jarvela I, Autti T, Vanninen R, Salmenpera T, van Diggelen OP (2007) Juvenile-onset neuronal ceroid lipofuscinosis with infantile CLN1 mutation and palmitoyl-protein thioesterase deficiency. Eur J Neurol 14:369–372

    Article  CAS  PubMed  Google Scholar 

  48. Griffey M, Bible E, Vogler C, Levy B, Gupta P, Cooper J, Sands MS (2004) Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:360–369

    Article  CAS  PubMed  Google Scholar 

  49. Griffey M, Macauley SL, Ogilvie JM, Sands MS (2005) AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 12:413–421

    Article  CAS  PubMed  Google Scholar 

  50. Bellizzi JJ 3rd, Widom J, Kemp C, Lu JY, Das AK, Hofmann SL, Clardy J (2000) The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis. Proc Natl Acad Sci USA 97:4573–4578

    Article  CAS  PubMed  Google Scholar 

  51. Hellsten E, Vesa J, Olkkonen VM, Jalanko A, Peltonen L (1996) Human palmitoyl protein thioesterase: evidence for lysosomal targeting of the enzyme and disturbed cellular routing in infantile neuronal ceroid lipofuscinosis. EMBO J 15:5240–5245

    CAS  PubMed  Google Scholar 

  52. Lyly A, von Schantz C, Salonen T, Kopra O, Saarela J, Jauhiainen M, Kyttala A, Jalanko A (2007) Glycosylation, transport, and complex formation of palmitoyl protein thioesterase 1 (PPT1)–distinct characteristics in neurons. BMC Cell Biol 8:22

    Article  PubMed  CAS  Google Scholar 

  53. Verkruyse LA, Hofmann SL (1996) Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271:15831–15836

    Article  CAS  PubMed  Google Scholar 

  54. Lu JY, Verkruyse LA, Hofmann SL (2002) The effects of lysosomotropic agents on normal and INCL cells provide further evidence for the lysosomal nature of palmitoyl-protein thioesterase function. Biochim Biophys Acta 1583:35–44

    CAS  PubMed  Google Scholar 

  55. Camp LA, Hofmann SL (1993) Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem 268:22566–22574

    CAS  PubMed  Google Scholar 

  56. Ahtiainen L, Van Diggelen OP, Jalanko A, Kopra O (2003) Palmitoyl protein thioesterase 1 is targeted to the axons in neurons. J Comp Neurol 455:368–377

    Article  CAS  PubMed  Google Scholar 

  57. Heinonen O, Kyttala A, Lehmus E, Paunio T, Peltonen L, Jalanko A (2000) Expression of palmitoyl protein thioesterase in neurons. Mol Genet Metab 69:123–129

    Article  CAS  PubMed  Google Scholar 

  58. Lehtovirta M, Kyttala A, Eskelinen EL, Hess M, Heinonen O, Jalanko A (2001) Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL). Hum Mol Genet 10:69–75

    Article  CAS  PubMed  Google Scholar 

  59. Kim SJ, Zhang Z, Sarkar C, Tsai PC, Lee YC, Dye L, Mukherjee AB (2008) Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin Invest 118:3075–3086

    Article  CAS  PubMed  Google Scholar 

  60. Virmani T, Gupta P, Liu X, Kavalali ET, Hofmann SL (2005) Progressively reduced synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice. Neurobiol Dis 20:314–323

    Article  CAS  PubMed  Google Scholar 

  61. Tyynela J, Palmer DN, Baumann M, Haltia M (1993) Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett 330:8–12

    Article  CAS  PubMed  Google Scholar 

  62. Kim SJ, Zhang Z, Lee YC, Mukherjee AB (2006) Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL. Hum Mol Genet 15:1580–1586

    Article  CAS  PubMed  Google Scholar 

  63. Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB (2006) Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 15:1826–1834

    Article  CAS  PubMed  Google Scholar 

  64. Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17:469–477

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Lee YC, Kim SJ, Choi MS, Tsai PC, Xu Y, Xiao YJ, Zhang P, Heffer A, Mukherjee AB (2006) Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet 15:337–346

    Article  CAS  PubMed  Google Scholar 

  66. Tardy C, Sabourdy F, Garcia V, Jalanko A, Therville N, Levade T, Andrieu-Abadie N (2009) Palmitoyl protein thioesterase 1 modulates tumor necrosis factor alpha-induced apoptosis. Biochim Biophys Acta 1793:1250–1258

    Article  CAS  PubMed  Google Scholar 

  67. Macauley SL, Wozniak DF, Kielar C, Tan Y, Cooper JD, Sands MS (2009) Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp Neurol 217:124–135

    Article  CAS  PubMed  Google Scholar 

  68. Ahtiainen L, Kolikova J, Mutka AL, Luiro K, Gentile M, Ikonen E, Khiroug L, Jalanko A, Kopra O (2007) Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiol Dis 28:52–64

    Article  CAS  PubMed  Google Scholar 

  69. Buff H, Smith AC, Korey CA (2007) Genetic modifiers of Drosophila palmitoyl-protein thioesterase 1-induced degeneration. Genetics 176:209–220

    Article  CAS  PubMed  Google Scholar 

  70. Korey CA, MacDonald ME (2003) An over-expression system for characterizing Ppt1 function in Drosophila. BMC Neurosci 4:30

    Article  PubMed  Google Scholar 

  71. Lyly A, Marjavaara SK, Kyttala A, Uusi-Rauva K, Luiro K, Kopra O, Martinez LO, Tanhuanpaa K, Kalkkinen N, Suomalainen A, Jauhiainen M, Jalanko A (2008) Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 17:1406–1417

    Article  CAS  PubMed  Google Scholar 

  72. Cottone CD, Chattopadhyay S, Pearce DA (2001) Searching for interacting partners of CLN1, CLN2 and Btn1p with the two-hybrid system. Eur J Paediatr Neurol 5(Suppl A):95–98

    Article  PubMed  Google Scholar 

  73. Wisniewski KE, Kida E, Walus M, Wujek P, Kaczmarski W, Golabek AA (2001) Tripeptidyl-peptidase I in neuronal ceroid lipofuscinoses and other lysosomal storage disorders. Eur J Paediatr Neurol 5(Suppl A):73–79

    Article  PubMed  Google Scholar 

  74. Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, Lobel P (1997) Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science 277:1802–1805

    Article  CAS  PubMed  Google Scholar 

  75. Sleat DE, Gin RM, Sohar I, Wisniewski K, Sklower-Brooks S, Pullarkat RK, Palmer DN, Lerner TJ, Boustany RM, Uldall P, Siakotos AN, Donnelly RJ, Lobel P (1999) Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. Am J Hum Genet 64:1511–1523

    Article  CAS  PubMed  Google Scholar 

  76. Golabek AA, Kida E (2006) Tripeptidyl-peptidase I in health and disease. Biol Chem 387:1091–1099

    Article  CAS  PubMed  Google Scholar 

  77. Ezaki J, Takeda-Ezaki M, Oda K, Kominami E (2000) Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis. Biochem Biophys Res Commun 268:904–908

    Article  CAS  PubMed  Google Scholar 

  78. Lin L, Sohar I, Lackland H, Lobel P (2001) The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH. J Biol Chem 276:2249–2255

    CAS  PubMed  Google Scholar 

  79. Guhaniyogi J, Sohar I, Das K, Stock AM, Lobel P (2009) Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J Biol Chem 284:3985–3997

    Article  CAS  PubMed  Google Scholar 

  80. Golabek AA, Kida E, Walus M, Wujek P, Mehta P, Wisniewski KE (2003) Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I. J Biol Chem 278:7135–7145

    Article  CAS  PubMed  Google Scholar 

  81. Wlodawer A, Durell SR, Li M, Oyama H, Oda K, Dunn BM (2003) A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases. BMC Struct Biol 3:8

    Article  PubMed  Google Scholar 

  82. Tsiakas K, Steinfeld R, Storch S, Ezaki J, Lukacs Z, Kominami E, Kohlschutter A, Ullrich K, Braulke T (2004) Mutation of the glycosylated asparagine residue 286 in human CLN2 protein results in loss of enzymatic activity. Glycobiology 14:1C–5C

    Article  CAS  PubMed  Google Scholar 

  83. Steinfeld R, Steinke HB, Isbrandt D, Kohlschutter A, Gartner J (2004) Mutations in classical late infantile neuronal ceroid lipofuscinosis disrupt transport of tripeptidyl-peptidase I to lysosomes. Hum Mol Genet 13:2483–2491

    Article  CAS  PubMed  Google Scholar 

  84. Wujek P, Kida E, Walus M, Wisniewski KE, Golabek AA (2004) N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I. J Biol Chem 279:12827–12839

    Article  CAS  PubMed  Google Scholar 

  85. Golabek AA, Dolzhanskaya N, Walus M, Wisniewski KE, Kida E (2008) Prosegment of tripeptidyl peptidase I is a potent, slow-binding inhibitor of its cognate enzyme. J Biol Chem 283:16497–16504

    Article  CAS  PubMed  Google Scholar 

  86. Steinfeld R, Fuhrmann JC, Gartner J (2006) Detection of tripeptidyl peptidase I activity in living cells by fluorogenic substrates. J Histochem Cytochem 54:991–996

    Article  CAS  PubMed  Google Scholar 

  87. Kurachi Y, Oka A, Itoh M, Mizuguchi M, Hayashi M, Takashima S (2001) Distribution and development of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product. Acta Neuropathol 102:20–26

    CAS  PubMed  Google Scholar 

  88. Sleat DE, El-Banna M, Sohar I, Kim KH, Dobrenis K, Walkley SU, Lobel P (2008) Residual levels of tripeptidyl-peptidase I activity dramatically ameliorate disease in late-infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 94:222–233

    Article  CAS  PubMed  Google Scholar 

  89. Warburton MJ, Bernardini F (2001) The specificity of lysosomal tripeptidyl peptidase-I determined by its action on angiotensin-II analogues. FEBS Lett 500:145–148

    Article  CAS  PubMed  Google Scholar 

  90. Bernardini F, Warburton MJ (2002) Lysosomal degradation of cholecystokinin-(29–33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis. Biochem J 366:521–529

    Article  CAS  PubMed  Google Scholar 

  91. Kopan S, Sivasubramaniam U, Warburton MJ (2004) The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis. Biochem Biophys Res Commun 319:58–65

    Article  CAS  PubMed  Google Scholar 

  92. Autefage H, Albinet V, Garcia V, Berges H, Nicolau ML, Therville N, Altie MF, Caillaud C, Levade T, Andrieu-Abadie N (2009) Lysosomal serine protease CLN2 regulates tumor necrosis factor-alpha-mediated apoptosis in a Bid-dependent manner. J Biol Chem 284:11507–11516

    Article  CAS  PubMed  Google Scholar 

  93. Ezaki J, Takeda-Ezaki M, Kominami E (2000) Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase. J Biochem 128:509–516

    CAS  PubMed  Google Scholar 

  94. Tian Y, Sohar I, Taylor JW, Lobel P (2006) Determination of the substrate specificity of tripeptidyl-peptidase I using combinatorial peptide libraries and development of improved fluorogenic substrates. J Biol Chem 281:6559–6572

    Article  CAS  PubMed  Google Scholar 

  95. Vesa J, Chin MH, Oelgeschlager K, Isosomppi J, DellAngelica EC, Jalanko A, Peltonen L (2002) Neuronal ceroid lipofuscinoses are connected at molecular level: interaction of CLN5 protein with CLN2 and CLN3. Mol Biol Cell 13:2410–2420

    Article  CAS  PubMed  Google Scholar 

  96. Walus M, Kida E, Golabek AA (2010) Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I. Hum Mutat 31:710–721

    Article  CAS  PubMed  Google Scholar 

  97. Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L (1998) CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet 19:286–288

    Article  CAS  PubMed  Google Scholar 

  98. Isosomppi J, Vesa J, Jalanko A, Peltonen L (2002) Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. Hum Mol Genet 11:885–891

    Article  CAS  PubMed  Google Scholar 

  99. Schmiedt ML, Bessa C, Heine C, Ribeiro MG, Jalanko A, Kyttala A (2010) The neuronal ceroid lipofuscinosis protein CLN5: new insights into cellular maturation, transport, and consequences of mutations. Hum Mutat 31:356–365

    Article  CAS  PubMed  Google Scholar 

  100. Holmberg V, Jalanko A, Isosomppi J, Fabritius AL, Peltonen L, Kopra O (2004) The mouse ortholog of the neuronal ceroid lipofuscinosis CLN5 gene encodes a soluble lysosomal glycoprotein expressed in the developing brain. Neurobiol Dis 16:29–40

    Article  CAS  PubMed  Google Scholar 

  101. Sleat DE, Ding L, Wang S, Zhao C, Wang Y, Xin W, Zheng H, Moore DF, Sims KB, Lobel P (2009) Mass spectrometry-based protein profiling to determine the cause of lysosomal storage diseases of unknown etiology. Mol Cell Proteomics 8:1708–1718

    Article  CAS  PubMed  Google Scholar 

  102. Lebrun AH, Storch S, Ruschendorf F, Schmiedt ML, Kyttala A, Mole SE, Kitzmuller C, Saar K, Mewasingh LD, Boda V, Kohlschutter A, Ullrich K, Braulke T, Schulz A (2009) Retention of lysosomal protein CLN5 in the endoplasmic reticulum causes neuronal ceroid lipofuscinosis in Asian sibship. Hum Mutat 30:E651–E661

    Article  PubMed  Google Scholar 

  103. Sleat DE, Wang Y, Sohar I, Lackland H, Li Y, Li H, Zheng H, Lobel P (2006) Identification and validation of mannose 6-phosphate glycoproteins in human plasma reveal a wide range of lysosomal and non-lysosomal proteins. Mol Cell Proteomics 5:1942–1956

    Article  CAS  PubMed  Google Scholar 

  104. Vesa J, Peltonen L (2002) Mutated genes in juvenile and variant late infantile neuronal ceroid lipofuscinoses encode lysosomal proteins. Curr Mol Med 2:439–444

    Article  CAS  PubMed  Google Scholar 

  105. Lyly A, von Schantz C, Heine C, Schmiedt ML, Sipila T, Jalanko A, Kyttala A (2009) Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins. BMC Cell Biol 10:83

    Article  PubMed  CAS  Google Scholar 

  106. Bessa C, Teixeira CA, Mangas M, Dias A, Sa Miranda MC, Guimaraes A, Ferreira JC, Canas N, Cabral P, Ribeiro MG (2006) Two novel CLN5 mutations in a Portuguese patient with vLINCL: insights into molecular mechanisms of CLN5 deficiency. Mol Genet Metab 89:245–253

    Article  CAS  PubMed  Google Scholar 

  107. Klockars T, Holmberg V, Savukoski M, Lander ES, Peltonen L (1999) Transcript identification on the CLN5 region on chromosome 13q22. Hum Genet 105:51–56

    Article  CAS  PubMed  Google Scholar 

  108. Klockars T, Savukoski M, Isosomppi J, Peltonen L (1999) Positional cloning of the CLN5 gene defective in the Finnish variant of the LINCL. Mol Genet Metab 66:324–328

    Article  CAS  PubMed  Google Scholar 

  109. Pineda-Trujillo N, Cornejo W, Carrizosa J, Wheeler RB, Munera S, Valencia A, Agudelo-Arango J, Cogollo A, Anderson G, Bedoya G, Mole SE, Ruiz-Linares A (2005) A CLN5 mutation causing an atypical neuronal ceroid lipofuscinosis of juvenile onset. Neurology 64:740–742

    CAS  PubMed  Google Scholar 

  110. Cannelli N, Nardocci N, Cassandrini D, Morbin M, Aiello C, Bugiani M, Criscuolo L, Zara F, Striano P, Granata T, Bertini E, Simonati A, Santorelli FM (2007) Revelation of a novel CLN5 mutation in early juvenile neuronal ceroid lipofuscinosis. Neuropediatrics 38:46–49

    Article  CAS  PubMed  Google Scholar 

  111. Consortium BD (1995) Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium. Cell 82:949–957

    Article  Google Scholar 

  112. Chan CH, Mitchison HM, Pearce DA (2008) Transcript and in silico analysis of CLN3 in juvenile neuronal ceroid lipofuscinosis and associated mouse models. Hum Mol Genet 17:3332–3339

    Article  CAS  PubMed  Google Scholar 

  113. Margraf LR, Boriack RL, Routheut AA, Cuppen I, Alhilali L, Bennett CJ, Bennett MJ (1999) Tissue expression and subcellular localization of CLN3, the Batten disease protein. Mol Genet Metab 66:283–289

    Article  CAS  PubMed  Google Scholar 

  114. Golabek AA, Kaczmarski W, Kida E, Kaczmarski A, Michalewski MP, Wisniewski KE (1999) Expression studies of CLN3 protein (battenin) in fusion with the green fluorescent protein in mammalian cells in vitro. Mol Genet Metab 66:277–282

    Article  CAS  PubMed  Google Scholar 

  115. Kida E, Kaczmarski W, Golabek AA, Kaczmarski A, Michalewski M, Wisniewski KE (1999) Analysis of intracellular distribution and trafficking of the CLN3 protein in fusion with the green fluorescent protein in vitro. Mol Genet Metab 66:265–271

    Article  CAS  PubMed  Google Scholar 

  116. Kremmidiotis G, Lensink IL, Bilton RL, Woollatt E, Chataway TK, Sutherland GR, Callen DF (1999) The Batten disease gene product (CLN3p) is a Golgi integral membrane protein. Hum Mol Genet 8:523–531

    Article  CAS  PubMed  Google Scholar 

  117. Katz ML, Gao CL, Prabhakaram M, Shibuya H, Liu PC, Johnson GS (1997) Immunochemical localization of the Batten disease (CLN3) protein in retina. Invest Ophthalmol Vis Sci 38:2375–2386

    CAS  PubMed  Google Scholar 

  118. Ezaki J, Takeda-Ezaki M, Koike M, Ohsawa Y, Taka H, Mineki R, Murayama K, Uchiyama Y, Ueno T, Kominami E (2003) Characterization of Cln3p, the gene product responsible for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein. J Neurochem 87:1296–1308

    Article  CAS  PubMed  Google Scholar 

  119. Storch S, Pohl S, Quitsch A, Falley K, Braulke T (2007) C-terminal prenylation of the CLN3 membrane glycoprotein is required for efficient endosomal sorting to lysosomes. Traffic 8:431–444

    Article  CAS  PubMed  Google Scholar 

  120. Luiro K, Kopra O, Lehtovirta M, Jalanko A (2001) CLN3 protein is targeted to neuronal synapses but excluded from synaptic vesicles: new clues to Batten disease. Hum Mol Genet 10:2123–2131

    Article  CAS  PubMed  Google Scholar 

  121. Jarvela I, Lehtovirta M, Tikkanen R, Kyttala A, Jalanko A (1999) Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum Mol Genet 8:1091–1098

    Article  CAS  PubMed  Google Scholar 

  122. Phillips SN, Benedict JW, Weimer JM, Pearce DA (2005) CLN3, the protein associated with batten disease: structure, function and localization. J Neurosci Res 79:573–583

    Article  CAS  PubMed  Google Scholar 

  123. Storch S, Pohl S, Braulke T (2004) A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting. J Biol Chem 279:53625–53634

    Article  CAS  PubMed  Google Scholar 

  124. Kyttala A, Yliannala K, Schu P, Jalanko A, Luzio JP (2005) AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif. J Biol Chem 280:10277–10283

    Article  PubMed  CAS  Google Scholar 

  125. Kyttala A, Ihrke G, Vesa J, Schell MJ, Luzio JP (2004) Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells. Mol Biol Cell 15:1313–1323

    Article  PubMed  CAS  Google Scholar 

  126. Mao Q, Foster BJ, Xia H, Davidson BL (2003) Membrane topology of CLN3, the protein underlying Batten disease. FEBS Lett 541:40–46

    Article  CAS  PubMed  Google Scholar 

  127. Mao Q, Xia H, Davidson BL (2003) Intracellular trafficking of CLN3, the protein underlying the childhood neurodegenerative disease, Batten disease. FEBS Lett 555:351–357

    Article  CAS  PubMed  Google Scholar 

  128. Nugent T, Mole SE, Jones DT (2008) The transmembrane topology of Batten disease protein CLN3 determined by consensus computational prediction constrained by experimental data. FEBS Lett 582:1019–1024

    Article  CAS  PubMed  Google Scholar 

  129. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  130. Uusi-Rauva K, Luiro K, Tanhuanpaa K, Kopra O, Martin-Vasallo P, Kyttala A, Jalanko A (2008) Novel interactions of CLN3 protein link Batten disease to dysregulation of fodrin-Na+, K+ ATPase complex. Exp Cell Res 314:2895–2905

    Article  CAS  PubMed  Google Scholar 

  131. De Matteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113:2331–2343

    PubMed  Google Scholar 

  132. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    CAS  PubMed  Google Scholar 

  133. Zimmer WE, Zhao Y, Sikorski AF, Critz SD, Sangerman J, Elferink LA, Xu XS, Goodman SR (2000) The domain of brain beta-spectrin responsible for synaptic vesicle association is essential for synaptic transmission. Brain Res 881:18–27

    Article  CAS  PubMed  Google Scholar 

  134. Nelson WJ, Hammerton RW (1989) A membrane-cytoskeletal complex containing Na+, K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol 108:893–902

    Article  CAS  PubMed  Google Scholar 

  135. Kizhatil K, Sandhu NK, Peachey NS, Bennett V (2009) Ankyrin-B is required for coordinated expression of beta-2-spectrin, the Na/K-ATPase and the Na/Ca exchanger in the inner segment of rod photoreceptors. Exp Eye Res 88:57–64

    Article  CAS  PubMed  Google Scholar 

  136. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  137. Geering K (2008) Functional roles of Na, K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Article  CAS  PubMed  Google Scholar 

  138. Crambert G, Geering K (2003). FXYD proteins: new tissue-specific regulators of the ubiquitous Na, K-ATPase. Sci STKE 2003, RE1

  139. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  140. Luiro K, Yliannala K, Ahtiainen L, Maunu H, Jarvela I, Kyttala A, Jalanko A (2004) Interconnections of CLN3, Hook1 and Rab proteins link Batten disease to defects in the endocytic pathway. Hum Mol Genet 13:3017–3027

    Article  CAS  PubMed  Google Scholar 

  141. Kramer H, Phistry M (1996) Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies. J Cell Biol 133:1205–1215

    Article  CAS  PubMed  Google Scholar 

  142. Walenta JH, Didier AJ, Liu X, Kramer H (2001) The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol 152:923–934

    Article  CAS  PubMed  Google Scholar 

  143. Kramer H, Phistry M (1999) Genetic analysis of hook, a gene required for endocytic trafficking in drosophila. Genetics 151:675–684

    CAS  PubMed  Google Scholar 

  144. Weimer JM, Chattopadhyay S, Custer AW, Pearce DA (2005) Elevation of Hook1 in a disease model of Batten disease does not affect a novel interaction between Ankyrin G and Hook1. Biochem Biophys Res Commun 330:1176–1181

    Article  CAS  PubMed  Google Scholar 

  145. Geering K (2005) Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr 37:387–392

    Article  CAS  PubMed  Google Scholar 

  146. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  CAS  PubMed  Google Scholar 

  147. Zhang D, Hou Q, Wang M, Lin A, Jarzylo L, Navis A, Raissi A, Liu F, Man HY (2009) Na, K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J Neurosci 29:4498–4511

    Article  CAS  PubMed  Google Scholar 

  148. Kovacs AD, Weimer JM, Pearce DA (2006) Selectively increased sensitivity of cerebellar granule cells to AMPA receptor-mediated excitotoxicity in a mouse model of Batten disease. Neurobiol Dis 22:575–585

    Article  CAS  PubMed  Google Scholar 

  149. Chattopadhyay S, Ito M, Cooper JD, Brooks AI, Curran TM, Powers JM, Pearce DA (2002) An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol Genet 11:1421–1431

    Article  CAS  PubMed  Google Scholar 

  150. Luiro K, Kopra O, Blom T, Gentile M, Mitchison HM, Hovatta I, Tornquist K, Jalanko A (2006) Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res 84:1124–1138

    Article  CAS  PubMed  Google Scholar 

  151. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  CAS  PubMed  Google Scholar 

  152. Buxbaum JD, Choi EK, Luo Y, Lilliehook C, Crowley AC, Merriam DE, Wasco W (1998) Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med 4:1177–1181

    Article  CAS  PubMed  Google Scholar 

  153. Lilliehook C, Chan S, Choi EK, Zaidi NF, Wasco W, Mattson MP, Buxbaum JD (2002) Calsenilin enhances apoptosis by altering endoplasmic reticulum calcium signaling. Mol Cell Neurosci 19:552–559

    Article  CAS  PubMed  Google Scholar 

  154. Choi EK, Zaidi NF, Miller JS, Crowley AC, Merriam DE, Lilliehook C, Buxbaum JD, Wasco W (2001) Calsenilin is a substrate for caspase-3 that preferentially interacts with the familial Alzheimer’s disease-associated C-terminal fragment of presenilin 2. J Biol Chem 276:19197–19204

    Article  CAS  PubMed  Google Scholar 

  155. Jo DG, Kim MJ, Choi YH, Kim IK, Song YH, Woo HN, Chung CW, Jung YK (2001) Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J 15:589–591

    CAS  PubMed  Google Scholar 

  156. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398:80–84

    Article  CAS  PubMed  Google Scholar 

  157. Zaidi NF, Thomson EE, Choi EK, Buxbaum JD, Wasco W (2004) Intracellular calcium modulates the nuclear translocation of calsenilin. J Neurochem 89:593–601

    Article  CAS  PubMed  Google Scholar 

  158. Chang JW, Choi H, Kim HJ, Jo DG, Jeon YJ, Noh JY, Park WJ, Jung YK (2007) Neuronal vulnerability of CLN3 deletion to calcium-induced cytotoxicity is mediated by calsenilin. Hum Mol Genet 16:317–326

    Article  CAS  PubMed  Google Scholar 

  159. Yu L, Sun C, Mendoza R, Wang J, Matayoshi ED, Hebert E, Pereda-Lopez A, Hajduk PJ, Olejniczak ET (2007) Solution structure and calcium-binding properties of EF-hands 3 and 4 of calsenilin. Protein Sci 16:2502–2509

    Article  CAS  PubMed  Google Scholar 

  160. Shibata R, Misonou H, Campomanes CR, Anderson AE, Schrader LA, Doliveira LC, Carroll KI, Sweatt JD, Rhodes KJ, Trimmer JS (2003) A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. J Biol Chem 278:36445–36454

    Article  CAS  PubMed  Google Scholar 

  161. Wang K (2008) Modulation by clamping: Kv4 and KChIP interactions. Neurochem Res 33:1964–1969

    Article  PubMed  CAS  Google Scholar 

  162. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803–833

    Article  CAS  PubMed  Google Scholar 

  163. Cebolla B, Fernandez-Perez A, Perea G, Araque A, Vallejo M (2008) DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis. J Neurosci 28:6703–6713

    Article  CAS  PubMed  Google Scholar 

  164. Pontikis CC, Cotman SL, MacDonald ME, Cooper JD (2005) Thalamocortical neuron loss and localized astrocytosis in the Cln3Deltaex7/8 knock-in mouse model of Batten disease. Neurobiol Dis 20:823–836

    Article  CAS  PubMed  Google Scholar 

  165. Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis MC, Parks AL, Xu W, Li J, Gurney M, Myers RL, Himes CS, Hiebsch R, Ruble C, Nye JS, Curtis D (2002) aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 3:85–97

    Article  CAS  PubMed  Google Scholar 

  166. Lilliehook C, Bozdagi O, Yao J, Gomez-Ramirez M, Zaidi NF, Wasco W, Gandy S, Santucci AC, Haroutunian V, Huntley GW, Buxbaum JD (2003) Altered Abeta formation and long-term potentiation in a calsenilin knock-out. J Neurosci 23:9097–9106

    CAS  PubMed  Google Scholar 

  167. Lathia JD, Mattson MP, Cheng A (2008) Notch: from neural development to neurological disorders. J Neurochem 107:1471–1481

    Article  CAS  PubMed  Google Scholar 

  168. Weimer JM, Benedict JW, Getty AL, Pontikis CC, Lim MJ, Cooper JD, Pearce DA (2009) Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis. Brain Res 1266:93–107

    Article  CAS  PubMed  Google Scholar 

  169. Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME (2001) Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31:557–568

    Article  CAS  PubMed  Google Scholar 

  170. Tuxworth RI, Vivancos V, O’Hare MB, Tear G (2009) Interactions between the juvenile Batten disease gene, CLN3, and the Notch and JNK signalling pathways. Hum Mol Genet 18:667–678

    Article  CAS  PubMed  Google Scholar 

  171. Kataoka N, Diem MD, Kim VN, Yong J, Dreyfuss G (2001) Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J 20:6424–6433

    Article  CAS  PubMed  Google Scholar 

  172. Micklem DR, Dasgupta R, Elliott H, Gergely F, Davidson C, Brand A, Gonzalez-Reyes A, St Johnston D (1997) The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr Biol 7:468–478

    Article  CAS  PubMed  Google Scholar 

  173. Vitiello SP, Benedict JW, Padilla-Lopez S, Pearce DA (2010) Interaction between Sdo1p and Btn1p in the Saccharomyces cerevisiae model for Batten disease. Hum Mol Genet 19:931–942

    Article  CAS  PubMed  Google Scholar 

  174. Boocock GR, Marit MR, Rommens JM (2006) Phylogeny, sequence conservation, and functional complementation of the SBDS protein family. Genomics 87:758–771

    Article  CAS  PubMed  Google Scholar 

  175. Menne TF, Goyenechea B, Sanchez-Puig N, Wong CC, Tonkin LM, Ancliff PJ, Brost RL, Costanzo M, Boone C, Warren AJ (2007) The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet 39:486–495

    Article  CAS  PubMed  Google Scholar 

  176. Luz JS, Georg RC, Gomes CH, Machado-Santelli GM, Oliveira CC (2009) Sdo1p, the yeast orthologue of Shwachman-Bodian-Diamond syndrome protein, binds RNA and interacts with nuclear rRNA-processing factors. Yeast 26:287–298

    Article  CAS  PubMed  Google Scholar 

  177. Ball HL, Zhang B, Riches JJ, Gandhi R, Li J, Rommens JM, Myers JS (2009) Shwachman-Bodian Diamond syndrome is a multi-functional protein implicated in cellular stress responses. Hum Mol Genet 18:3684–3695

    Article  CAS  PubMed  Google Scholar 

  178. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, Rommens JM (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33:97–101

    Article  CAS  PubMed  Google Scholar 

  179. Toiviainen-Salo S, Makitie O, Mannerkoski M, Hamalainen J, Valanne L, Autti T (2008) Shwachman-Diamond syndrome is associated with structural brain alterations on MRI. Am J Med Genet A 146A:1558–1564

    Article  PubMed  Google Scholar 

  180. Boriack RL, Bennett MJ (2001) CLN-3 protein is expressed in the pancreatic somatostatin-secreting delta cells. Eur J Paediatr Neurol 5(Suppl A):99–102

    Article  PubMed  Google Scholar 

  181. Wessels D, Srikantha T, Yi S, Kuhl S, Aravind L, Soll DR (2006) The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. J Cell Sci 119:370–379

    Article  CAS  PubMed  Google Scholar 

  182. Stepanovic V, Wessels D, Goldman FD, Geiger J, Soll DR (2004) The chemotaxis defect of Shwachman-Diamond Syndrome leukocytes. Cell Motil Cytoskeleton 57:158–174

    Article  CAS  PubMed  Google Scholar 

  183. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  CAS  PubMed  Google Scholar 

  184. Sharp JD, Wheeler RB, Lake BD, Fox M, Gardiner RM, Williams RE (1999) Genetic and physical mapping of the CLN6 gene on chromosome 15q21–23. Mol Genet Metab 66:329–331

    Article  CAS  PubMed  Google Scholar 

  185. Gao H, Boustany RM, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, Gillis T, Qin X, Liu S, Donahue LR, Bronson RT, Faust JR, Stout D, Haines JL, Lerner TJ, MacDonald ME (2002) Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet 70:324–335

    Article  CAS  PubMed  Google Scholar 

  186. Heine C, Koch B, Storch S, Kohlschutter A, Palmer DN, Braulke T (2004) Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A. J Biol Chem 279:22347–22352

    Article  CAS  PubMed  Google Scholar 

  187. Mole SE, Michaux G, Codlin S, Wheeler RB, Sharp JD, Cutler DF (2004) CLN6, which is associated with a lysosomal storage disease, is an endoplasmic reticulum protein. Exp Cell Res 298:399–406

    Article  CAS  PubMed  Google Scholar 

  188. Heine C, Quitsch A, Storch S, Martin Y, Lonka L, Lehesjoki AE, Mole SE, Braulke T (2007) Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Mol Membr Biol 24:74–87

    Article  CAS  PubMed  Google Scholar 

  189. Benedict JW, Getty AL, Wishart TM, Gillingwater TH, Pearce DA (2009) Protein product of CLN6 gene responsible for variant late-onset infantile neuronal ceroid lipofuscinosis interacts with CRMP-2. J Neurosci Res 87:2157–2166

    Article  CAS  PubMed  Google Scholar 

  190. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4:781–782

    Article  CAS  PubMed  Google Scholar 

  191. Arimura N, Menager C, Fukata Y, Kaibuchi K (2004) Role of CRMP-2 in neuronal polarity. J Neurobiol 58:34–47

    Article  CAS  PubMed  Google Scholar 

  192. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137–149

    Article  CAS  PubMed  Google Scholar 

  193. Nishimura T, Fukata Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H, Kaibuchi K (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5:819–826

    Article  CAS  PubMed  Google Scholar 

  194. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4:583–591

    CAS  PubMed  Google Scholar 

  195. Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H, Takenawa T, Kaibuchi K (2005) CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 25:9920–9935

    Article  CAS  PubMed  Google Scholar 

  196. Wheeler RB, Sharp JD, Mitchell WA, Bate SL, Williams RE, Lake BD, Gardiner RM (1999) A new locus for variant late infantile neuronal ceroid lipofuscinosis-CLN7. Mol Genet Metab 66:337–338

    Article  CAS  PubMed  Google Scholar 

  197. Mitchell WA, Wheeler RB, Sharp JD, Bate SL, Gardiner RM, Ranta US, Lonka L, Williams RE, Lehesjoki AE, Mole SE (2001) Turkish variant late infantile neuronal ceroid lipofuscinosis (CLN7) may be allelic to CLN8. Eur J Paediatr Neurol 5(Suppl A):21–27

    Article  PubMed  Google Scholar 

  198. Kousi M, Siintola E, Dvorakova L, Vlaskova H, Turnbull J, Topcu M, Yuksel D, Gokben S, Minassian BA, Elleder M, Mole SE, Lehesjoki AE (2009) Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain 132:810–819

    Article  PubMed  Google Scholar 

  199. Aiello C, Terracciano A, Simonati A, Discepoli G, Cannelli N, Claps D, Crow YJ, Bianchi M, Kitzmuller C, Longo D, Tavoni A, Franzoni E, Tessa A, Veneselli E, Boldrini R, Filocamo M, Williams RE, Bertini ES, Biancheri R, Carrozzo R, Mole SE, Santorelli FM (2009) Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile neuronal ceroid lipofuscinosis. Hum Mutat 30:E530–E540

    Article  PubMed  Google Scholar 

  200. Siintola E, Topcu M, Aula N, Lohi H, Minassian BA, Paterson AD, Liu XQ, Wilson C, Lahtinen U, Anttonen AK, Lehesjoki AE (2007) The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet 81:136–146

    Article  CAS  PubMed  Google Scholar 

  201. Steenhuis P, Herder S, Gelis S, Braulke T, Storch S (2010) Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. Traffic doi:10.1111/j.1600-0854.2010.01073.x

  202. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  Google Scholar 

  203. Ranta S, Topcu M, Tegelberg S, Tan H, Ustubutun A, Saatci I, Dufke A, Enders H, Pohl K, Alembik Y, Mitchell WA, Mole SE, Lehesjoki AE (2004) Variant late infantile neuronal ceroid lipofuscinosis in a subset of Turkish patients is allelic to Northern epilepsy. Hum Mutat 23:300–305

    Article  CAS  PubMed  Google Scholar 

  204. Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, Sharp J, Wheeler R, Kusumi K, Mole S, Liu W, Soares MB, Bonaldo MF, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE (1999) The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet 23:233–236

    Article  CAS  PubMed  Google Scholar 

  205. Reinhardt K, Grapp M, Schlachter K, Bruck W, Gartner J, Steinfeld R (2010) Novel CLN8 mutations confirm the clinical and ethnic diversity of late infantile neuronal ceroid lipofuscinosis. Clin Genet 77:79–85

    Article  CAS  PubMed  Google Scholar 

  206. Cannelli N, Cassandrini D, Bertini E, Striano P, Fusco L, Gaggero R, Specchio N, Biancheri R, Vigevano F, Bruno C, Simonati A, Zara F, Santorelli FM (2006) Novel mutations in CLN8 in Italian variant late infantile neuronal ceroid lipofuscinosis: another genetic hit in the Mediterranean. Neurogenetics 7:111–117

    Article  CAS  PubMed  Google Scholar 

  207. Vantaggiato C, Redaelli F, Falcone S, Perrotta C, Tonelli A, Bondioni S, Morbin M, Riva D, Saletti V, Bonaglia MC, Giorda R, Bresolin N, Clementi E, Bassi MT (2009) A novel CLN8 mutation in late-infantile-onset neuronal ceroid lipofuscinosis (LINCL) reveals aspects of CLN8 neurobiological function. Hum Mutat 30:1104–1116

    Article  CAS  PubMed  Google Scholar 

  208. Bronson RT, Donahue LR, Johnson KR, Tanner A, Lane PW, Faust JR (1998) Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9. Am J Med Genet 77:289–297

    Article  CAS  PubMed  Google Scholar 

  209. Lonka L, Kyttala A, Ranta S, Jalanko A, Lehesjoki AE (2000) The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum. Hum Mol Genet 9:1691–1697

    Article  CAS  PubMed  Google Scholar 

  210. Lonka L, Salonen T, Siintola E, Kopra O, Lehesjoki AE, Jalanko A (2004) Localization of wild-type and mutant neuronal ceroid lipofuscinosis CLN8 proteins in non-neuronal and neuronal cells. J Neurosci Res 76:862–871

    Article  CAS  PubMed  Google Scholar 

  211. D’Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  212. Hegde RS, Voigt S, Rapoport TA, Lingappa VR (1998) TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 92:621–631

    Article  CAS  PubMed  Google Scholar 

  213. Winter E, Ponting CP (2002) TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem Sci 27:381–383

    Article  CAS  PubMed  Google Scholar 

  214. Hermansson M, Kakela R, Berghall M, Lehesjoki AE, Somerharju P, Lahtinen U (2005) Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J Neurochem 95:609–617

    Article  CAS  PubMed  Google Scholar 

  215. Vance JE, Stone SJ, Faust JR (1997) Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1344:286–299

    CAS  PubMed  Google Scholar 

  216. Zhong NA, Moroziewicz DN, Ju W, Wisniewski KE, Jurkiewicz A, Brown WT (2000) CLN-encoded proteins do not interact with each other. Neurogenetics 3:41–44

    CAS  PubMed  Google Scholar 

  217. Persaud-Sawin DA, Mousallem T, Wang C, Zucker A, Kominami E, Boustany RM (2007) Neuronal ceroid lipofuscinosis: a common pathway? Pediatr Res 61:146–152

    Article  PubMed  Google Scholar 

  218. von Schantz C, Saharinen J, Kopra O, Cooper JD, Gentile M, Hovatta I, Peltonen L, Jalanko A (2008) Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases. BMC Genomics 9:146

    Article  CAS  Google Scholar 

  219. Lonka L, Aalto A, Kopra O, Kuronen M, Kokaia Z, Saarma M, Lehesjoki AE (2005) The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy. BMC Neurosci 6:27

    Article  PubMed  CAS  Google Scholar 

  220. Getty AL, Benedict JW, Pearce DA (2010) A novel interaction of CLN3 with nonmuscle myosin-IIB and an associated cell motility defect in Cln3 /. Exp Cell Res (submitted)

Download references

Acknowledgements

The authors wish to acknowledge their sources of funding: National Institutes of Health (NIH) Institutional Ruth L. Kirschstein National Research Service Award [GM068411] (A.L.G), NIH R01 NS36610, NIH R01 NS43310 and the Batten Disease Support and Research Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Pearce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getty, A.L., Pearce, D.A. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell. Mol. Life Sci. 68, 453–474 (2011). https://doi.org/10.1007/s00018-010-0468-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0468-6

Keywords

Navigation