Skip to main content

Gene Therapy Approaches to Treat the Neurodegeneration and Visual Failure in Neuronal Ceroid Lipofuscinoses

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1074))

Abstract

Neuronal ceroid lipofuscinoses (NCLs) are a group of fatal, inherited lysosomal storage disorders mostly affecting the central nervous system of children. Symptoms include vision loss, seizures, motor deterioration and cognitive decline ultimately resulting in premature death. Studies in animal models showed that the diseases are amenable to gene supplementation therapies, and over the last decade, major advances have been made in the (pre)clinical development of these therapies. This mini-review summarises and discusses current gene therapy approaches for NCL targeting the brain and the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bond M, Holthaus SM, Tammen I et al (2013) Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1832:1842–1865

    Article  CAS  Google Scholar 

  • Bosch ME, Aldrich A, Fallet R et al (2016) Self-complementary AAV9 gene delivery partially corrects pathology associated with juvenile neuronal ceroid lipofuscinosis (CLN3). J Neurosci 36:9669–9682

    Article  CAS  Google Scholar 

  • Cabrera-Salazar MA, Roskelley EM, Bu J et al (2007) Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease. Mol Ther 15:1782–1788

    Article  CAS  Google Scholar 

  • Cain J, Likhite S, Whitel K et al (2016) Testing saftey and efficacy of AAV9-CLN6 gene therapy in a mouse model of CLN6-Batten disease. Presented at the 15th International Conference on Neuronal Ceroid Lipofuscinoses, 5th-8th October 2016, Boston, Massachusetts, USA

    Google Scholar 

  • Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13:528–537

    Article  CAS  Google Scholar 

  • Collins J, Holder GE, Herbert H et al (2006) Batten disease: features to facilitate early diagnosis. Br J Ophthalmol 90:1119–1124

    Article  CAS  Google Scholar 

  • Crystal RG, Sondhi D, Hackett NR et al (2004) Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther 15:1331–1354

    Google Scholar 

  • Ding SL, Tecedor L, Stein CS et al (2011) A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 41:237–248

    Article  CAS  Google Scholar 

  • Fietz M, AlSayed M, Burke D et al (2016) Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): Expert recommendations for early detection and laboratory diagnosis. Molecular Genetics and Metabolism 119(1-2):160–167

    Article  CAS  Google Scholar 

  • Foust KD, Xueyong Wang, McGovern VL et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nature Biotechnology 28(3):271–274

    Article  CAS  Google Scholar 

  • Garg SK, Lioy DT, Cheval H et al (2013) Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of rett syndrome. Journal of Neuroscience 33(34):13612–13620

    Article  CAS  Google Scholar 

  • Geraets RD, Seung yon Koh, Hastings ML et al (2016) Moving towards effective therapeutic strategies for neuronal ceroid lipofuscinosis. Orphanet Journal of Rare Diseases 11(1)

    Google Scholar 

  • Griffey MA, Bible E, Vogler C et al (2004) Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:360–369

    Article  CAS  Google Scholar 

  • Griffey MA, Macauley S, Ogilvie J et al (2005) AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 12:413–421

    Article  CAS  Google Scholar 

  • Griffey MA, Wozniak D, Wong M et al (2006) CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther 13:538–547

    Article  CAS  Google Scholar 

  • Holthaus SM, Ribeiro J, Abelleira-Hervas L et al (2018) Prevention of photoreceptor cell loss in a Cln6nclf mouse model of Batten disease requires CLN6 gene transfer to bipolar cells. Molecular Therapy, in press

    Google Scholar 

  • Jadav RH, Sinha S, Yasha TC et al (2014) Clinical,electrophysiological, imaging, and ultrastructural description in 68 patients with neuronal ceroid lipofuscinoses and its subtypes. Pediatric Neurology 50(1):85–95

    Article  Google Scholar 

  • Jalanko A, Braulke T (2009) Neuronal ceroid lipofuscinoses. Biochim Biophys Acta 1793:697–709

    Article  CAS  Google Scholar 

  • Jui-Yun Lua B, Hub J, Hofmann SL (2010) Human recombinant palmitoyl protein thioesterase-1 (PPT1) for preclinical evaluation of enzyme replacement therapy for infantile neuronal ceroid lipofuscinosis. Mol Genet Meta 99:374–378

    Article  Google Scholar 

  • Katz ML, Tecedor L, Yonghong Chen et al (2015) AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease. Science Translational Medicine 7(313):313ra180–313ra180

    Article  Google Scholar 

  • Kollmann K, Uusi-Rauva K, Scifo E et al (2013) Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta 1832:1866–1881

    Article  CAS  Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61:307–330

    Article  CAS  Google Scholar 

  • Kousi M, Lehesjoki AE, Mole SE (2011) Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 33:42–63

    Article  Google Scholar 

  • Macauley SL, Roberts MS, Wong AM et al (2012) Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. An Neurol 71:797–804

    Article  CAS  Google Scholar 

  • Mao Q, Xia H, Davidson BL (2003) Intracellular trafficking of CLN3, the protein underlying the childhood neurodegenerative disease, Batten disease. FEBS Lett 555:351–357

    Article  CAS  Google Scholar 

  • Meyer K, Ferraiuolo L, Schmelzer L et al (2014) Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: A dose–response study in mice and nonhuman primates. Molecular Therapy 23(3): 477–487

    Article  CAS  Google Scholar 

  • Mitchell NL, Barrell GK, Russell KN al (2016) Gene transfer can prevent stereotypical disease development in ovine CLN5 and CLN6 models of NCL. Presented at the 15th International Conference on Neuronal Ceroid Lipofuscinoses, 5th-8th October 2016, Boston, Massachusetts, USA

    Google Scholar 

  • Mole SE, Williams RE, Goebel HH (2005) Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 6:107–126

    Article  Google Scholar 

  • Neufeld EF, Fratantoni JC (1970) Inborn errors of mucopolysaccharide metabolism: faulty degradative mechanisms are implicated in this group of human diseases. Science 169:141–146

    Article  CAS  Google Scholar 

  • Neverman NJ, Best HL, Hofmann SL et al (2015) Experimental therapies in the neuronal ceroid lipofuscinoses. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1852(10):2292–2300

    Article  CAS  Google Scholar 

  • Passini MA, Dodge JC, Bu J et al (2006) Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci 26:1334–1342

    Article  CAS  Google Scholar 

  • Pike LS, Tannous BA, Deliolanis NC et al (2011) Imaging gene delivery in a mouse model of congenital neuronal ceroid lipofuscinosis. Gene Ther 18:1173–1178

    Article  CAS  Google Scholar 

  • Schulz A, Kohlschütter A, Mink J et al (2013) NCL diseases - clinical perspectives. Biochim Biophys Acta 1832:1801–1806

    Article  CAS  Google Scholar 

  • Shevtsova Z, Garrido M, Weishaupt J et al (2010) CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. Am J Pathol 177:271–279

    Article  CAS  Google Scholar 

  • Sondhi D, Hackett NR, Peterson DA et al (2007) Molecular therapy – enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 15:481–491

    Article  CAS  Google Scholar 

  • Sondhi D, Johnson L, Purpura K et al (2012) Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Meth 23:324–335

    Article  CAS  Google Scholar 

  • Sondhi D, Scott EC, Chen A et al (2014) Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3Gene. Hum Gene Ther 25:223–239

    Article  CAS  Google Scholar 

  • The International Batten Disease Consortium (1995) Isolation of a novel gene underlying Batten disease, CLN3. Cell 82:949–957

    Article  Google Scholar 

  • Warrier V, Vieira M, Mole SE (2013) Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinoses. Biochim Biophys Acta 1832:1827–1830

    Article  CAS  Google Scholar 

  • Williams RE, Mole SE (2012) New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology 79:183–191

    Article  Google Scholar 

  • Williams RE, Aberg L, Autti T et al (2006) Diagnosis of the neuronal ceroid lipofuscinoses: an update. Biochim Biophys Acta 1762:865–872

    Article  CAS  Google Scholar 

  • Worgall S, Sondhi D, Hackett NR et al (2008) Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 19:463–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia-Martha kleine Holthaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

kleine Holthaus, SM., Smith, A.J., Mole, S.E., Ali, R.R. (2018). Gene Therapy Approaches to Treat the Neurodegeneration and Visual Failure in Neuronal Ceroid Lipofuscinoses. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_12

Download citation

Publish with us

Policies and ethics