Skip to main content
Log in

Non-Opioid Treatments for Opioid Use Disorder: Rationales and Data to Date

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Opioid use disorder (OUD) represents a major public health problem that affects millions of people in the USA and worldwide. The relapsing and recurring aspect of OUD, driven by lasting neurobiological adaptations at different reward centres in the brain, represents a major obstacle towards successful long-term remission from opioid use. Currently, three drugs that modulate the function of the opioidergic receptors, methadone, buprenorphine and naltrexone have been approved by the US Food and Drug Administration (FDA) to treat OUD. In this review, we discuss the limitations and challenges associated with the current maintenance and medication-assisted withdrawal strategies commonly used to treat OUD. We further explore the involvement of glutamatergic, endocannabinoid and orexin signaling systems in the development, maintenance and expression of addiction-like behaviours in animal models of opioid addiction, and as potential and novel targets to expand therapeutic options to treat OUD. Despite a growing preclinical literature highlighting the role of these potential targets in animal models of opioid addiction, clinical and translational studies for novel treatments of OUD remain limited and inconclusive. Further preclinical and clinical investigations are needed to expand the arsenal of primary treatment options and adjuncts to maximise efficacy and prevent relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–73. https://doi.org/10.1016/S2215-0366(16)00104-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington: American Pyschiatric Publishing; 2013.

    Book  Google Scholar 

  3. Hser Y-I, Hoffman V, Grella CE, Anglin MD. A 33-year follow-up of narcotics addicts. Arch Gen Psychiatry. 2001;58(5):503–8. https://doi.org/10.1001/archpsyc.58.5.503.

    Article  CAS  PubMed  Google Scholar 

  4. Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: Results from the 2018 National Survey on Drug Use and Health. NSDUH Series H-54. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2019.

  5. Brady KT, McCauley JL, Back SE. Prescription opioid misuse, abuse, and treatment in the United States: an update. Am J Psychiatry. 2016;173(1):18–26. https://doi.org/10.1176/appi.ajp.2015.15020262.

    Article  PubMed  Google Scholar 

  6. Schuckit MA. Treatment of opioid-use disorders. N Engl J Med. 2016;375(4):357–68. https://doi.org/10.1056/NEJMra1604339.

    Article  PubMed  Google Scholar 

  7. Degenhardt L, Grebely J, Stone J, Hickman M, Vickerman P, Marshall BDL, et al. Global patterns of opioid use and dependence: harms to populations, interventions, and future action. Lancet. 2019;394(10208):1560–79. https://doi.org/10.1016/S0140-6736(19)32229-9.

    Article  CAS  PubMed  Google Scholar 

  8. Sweeting MJ, De Angelis D, Ades AE, Hickman M. Estimating the prevalence of ex-injecting drug use in the population. Stat Methods Med Res. 2008;18(4):381–95. https://doi.org/10.1177/0962280208094704.

    Article  PubMed  Google Scholar 

  9. Berrettini W. A brief review of the genetics and pharmacogenetics of opioid use disorders. Dialogues Clin Neurosci. 2017;19(3):229–36.

    Article  Google Scholar 

  10. Townsend L, Flisher AJ, King G. A systematic review of the relationship between high school dropout and substance use. Clin Child Fam Psychol Rev. 2007;10(4):295–317. https://doi.org/10.1007/s10567-007-0023-7.

    Article  PubMed  Google Scholar 

  11. Conroy E, Degenhardt L, Mattick RP, Nelson EC. Child maltreatment as a risk factor for opioid dependence: comparison of family characteristics and type and severity of child maltreatment with a matched control group. Child Abuse Negl. 2009;33(6):343–52. https://doi.org/10.1016/j.chiabu.2008.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Santiago Rivera OJ, Havens JR, Parker MA, Anthony JC. Risk of heroin dependence in newly incident heroin users. JAMA Psychiatry. 2018;75(8):863–4. https://doi.org/10.1001/jamapsychiatry.2018.1214.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kolodny A, Courtwright DT, Hwang CS, Kreiner P, Eadie JL, Clark TW, et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu Rev Public Health. 2015;36(1):559–74. https://doi.org/10.1146/annurev-publhealth-031914-122957.

    Article  PubMed  Google Scholar 

  14. Hedegaard H, Minino AM, Warner M. Drug Overdose Deaths in the United States, 1999–2018 Hyattsville, MD: National Center for Health Statistics 2020 Contract No.: No. 356.

  15. Wilson N, Kariisa M, Seth P, Davis NL. Drug and opioid-involved overdose deaths—United States, 2017–2018. MMWR Morb Mortal Wkly Rep. 2020;2020(69):290–7. https://doi.org/10.15585/mmwr.mm6911a4.

    Article  Google Scholar 

  16. Oesterle TS, Thusius NJ, Rummans TA, Gold MS. Medication-assisted treatment for opioid-use disorder. Mayo Clin Proc. 2019;94(10):2072–86. https://doi.org/10.1016/j.mayocp.2019.03.029.

    Article  PubMed  Google Scholar 

  17. Marsch LA. The efficacy of methadone maintenance interventions in reducing illicit opiate use, HIV risk behavior and criminality: a meta-analysis. Addiction. 1998;93(4):515–32. https://doi.org/10.1046/j.1360-0443.1998.9345157.x.

    Article  CAS  PubMed  Google Scholar 

  18. Bart G. Maintenance medication for opiate addiction: the foundation of recovery. J Addict Dis. 2012;31(3):207–25. https://doi.org/10.1080/10550887.2012.694598.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jensen KP, DeVito EE, Yip S, Carroll KM, Sofuoglu M. The cholinergic system as a treatment target for opioid use disorder. CNS Drugs. 2018;32(11):981–96. https://doi.org/10.1007/s40263-018-0572-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Listos J, Lupina M, Talarek S, Mazur A, Orzelska-Gorka J, Kotlinska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20174302.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology. 2014;76:204–17. https://doi.org/10.1016/j.neuropharm.2013.08.028.

    Article  CAS  PubMed  Google Scholar 

  22. Noble F, Marie N. Management of opioid addiction with opioid substitution treatments: beyond methadone and buprenorphine. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2018.00742.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Williams TM, Daglish MR, Lingford-Hughes A, Taylor LG, Hammers A, Brooks DJ, et al. Brain opioid receptor binding in early abstinence from opioid dependence: positron emission tomography study. Br J Psychiatry J Ment Sci. 2007;191:63–9. https://doi.org/10.1192/bjp.bp.106.031120.

    Article  Google Scholar 

  24. Gonzalez G, Oliveto A, Kosten TR. Treatment of heroin (Diamorphine) addiction. Drugs. 2002;62(9):1331–433. https://doi.org/10.2165/00003495-200262090-00004.

    Article  CAS  PubMed  Google Scholar 

  25. Farrell M, Ward J, Mattick R, Hall W, Stimson GV, des Jarlais D, et al. Fortnightly review: methadone maintenance treatment in opiate dependence: a review. BMJ. 1994;309(6960):997–1001. https://doi.org/10.1136/bmj.309.6960.997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dole VP, Nyswander M. A medical treatment for diacetylmorphine (Heroin) addiction: a clinical trial with methadone hydrochloride. JAMA. 1965;193(8):646–50. https://doi.org/10.1001/jama.1965.03090080008002.

    Article  CAS  PubMed  Google Scholar 

  27. Koehl JL, Zimmerman DE, Bridgeman PJ. Medications for management of opioid use disorder. Am J Health Syst Pharm. 2019;76(15):1097–103. https://doi.org/10.1093/ajhp/zxz105.

    Article  PubMed  Google Scholar 

  28. Kling MA, Carson RE, Borg L, Zametkin A, Matochik JA, Schluger J, et al. Opioid receptor imaging with positron emission tomography and [<sup>18</sup>F]Cyclofoxy in long-term, methadone-treated former heroin addicts. J Pharmacol Exp Ther. 2000;295(3):1070–6.

    CAS  PubMed  Google Scholar 

  29. Proctor SL, Copeland AL, Kopak AM, Hoffmann NG, Herschman PL, Polukhina N. Predictors of patient retention in methadone maintenance treatment. Psychol Addict Behav. 2015;29(4):906–17. https://doi.org/10.1037/adb0000090.

    Article  PubMed  Google Scholar 

  30. Kelly SM, O'Grady KE, Mitchell SG, Brown BS, Schwartz RP. Predictors of methadone treatment retention from a multi-site study: a survival analysis. Drug Alcohol Depend. 2011;117(2–3):170–5. https://doi.org/10.1016/j.drugalcdep.2011.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Belding MA, McLellan AT, Zanis DA, Incmikoski R. Characterizing, "nonresponsive" methadone patients. J Subst Abuse Treat. 1998;15(6):485–92. https://doi.org/10.1016/s0740-5472(97)00292-4.

    Article  CAS  PubMed  Google Scholar 

  32. Joudrey PJ, Edelman EJ, Wang EA. Drive times to opioid treatment programs in urban and rural counties in 5 US States. JAMA. 2019;322(13):1310–2. https://doi.org/10.1001/jama.2019.12562.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Caplehorn JRM, Dalton MSYN, Cluff MC, Petrenas A-M. Retention in methadone maintenance and heroin addicts’risk of death. Addiction. 1994;89(2):203–7. https://doi.org/10.1111/j.1360-0443.1994.tb00879.x.

    Article  CAS  PubMed  Google Scholar 

  34. Davstad I, Stenbacka M, Leifman A, Beck O, Korkmaz S, Romelsjö A. Patterns of illicit drug use and retention in a methadone program: a longitudinal study. J Opioid Manag. 2007;3(1):27–34. https://doi.org/10.5055/jom.2007.0036.

    Article  PubMed  Google Scholar 

  35. Magura S, Rosenblum A. Leaving methadone treatment: lessons learned, lessons forgotten, lessons ignored. Mt Sinai J Med N Y. 2001;68(1):62–74.

    CAS  Google Scholar 

  36. Modesto-Lowe V, Swiezbin K, Chaplin M, Hoefer G. Use and misuse of opioid agonists in opioid addiction. Clevel Clin J Med. 2017;84(5):377–84. https://doi.org/10.3949/ccjm.84a.16091.

    Article  Google Scholar 

  37. McCance-Katz EF, Sullivan LE, Nallani S. Drug interactions of clinical importance among the opioids, methadone and buprenorphine, and other frequently prescribed medications: a review. Am J Addict. 2010;19(1):4–16. https://doi.org/10.1111/j.1521-0391.2009.00005.x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Comer SD, Collins ED. Self-administration of intravenous buprenorphine and the buprenorphine/naloxone combination by recently detoxified heroin abusers. J Pharmacol Exp Ther. 2002;303(2):695–703. https://doi.org/10.1124/jpet.102.038141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yokell MA, Zaller ND, Green TC, Rich JD. Buprenorphine and buprenorphine/naloxone diversion, misuse, and illicit use: an international review. Curr Drug Abuse Rev. 2011;4(1):28–41. https://doi.org/10.2174/1874473711104010028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leander JD. Buprenorphine has potent kappa opioid receptor antagonist activity. Neuropharmacology. 1987;26(9):1445–7. https://doi.org/10.1016/0028-3908(87)90112-2.

    Article  CAS  PubMed  Google Scholar 

  41. Jasinski DR, Pevnick JS, Griffith JD. Human pharmacology and abuse potential of the analgesic buprenorphine: a potential agent for treating narcotic addiction. Arch Gen Psychiatry. 1978;35(4):501–16. https://doi.org/10.1001/archpsyc.1978.01770280111012.

    Article  CAS  PubMed  Google Scholar 

  42. Auriacombe M, Fatséas M, Dubernet J, Daulouède J-P, Tignol J. French field experience with buprenorphine. Am J Addict. 2004;13(S1):S17–S28. https://doi.org/10.1080/10550490490440780.

    Article  PubMed  Google Scholar 

  43. Nasser AF, Greenwald MK, Vince B, Fudala PJ, Twumasi-Ankrah P, Liu Y, et al. Sustained-release buprenorphine (RBP-6000) blocks the effects of opioid challenge with hydromorphone in subjects with opioid use disorder. J Clin Psychopharmacol. 2016;36(1):18–26. https://doi.org/10.1097/jcp.0000000000000434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Extended-Release Buprenorphine vs. Sublingual Buprenorphine for the Treatment of Opioid Use Disorder. https://ClinicalTrials.gov/show/NCT04352166.

  45. Mysels D, Sullivan MA. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use. Am J Addict. 2009;18(4):272–6. https://doi.org/10.1080/10550490902925862.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Carlezon WA Jr, Krystal AD. Kappa-opioid antagonists for psychiatric disorders: from bench to clinical trials. Depress Anxiety. 2016;33(10):895–906. https://doi.org/10.1002/da.22500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rothman RB, Gorelick DA, Heishman SJ, Eichmiller PR, Hill BH, Norbeck J, et al. An open-label study of a functional opioid kappa antagonist in the treatment of opioid dependence. J Subst Abuse Treat. 2000;18(3):277–81. https://doi.org/10.1016/s0740-5472(99)00074-4.

    Article  CAS  PubMed  Google Scholar 

  48. Helal MA, Habib ES, Chittiboyina AG. Selective kappa opioid antagonists for treatment of addiction, are we there yet? Eur J Med Chem. 2017;141:632–47. https://doi.org/10.1016/j.ejmech.2017.10.012.

    Article  CAS  PubMed  Google Scholar 

  49. Kelsey JE, Verhaak AM, Schierberl KC. The kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI), decreases morphine withdrawal and the consequent conditioned place aversion in rats. Behav Brain Res. 2015;283:16–211. https://doi.org/10.1016/j.bbr.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  50. Rothman RB, Gorelick DA, Heishman SJ, Eichmiller PR, Hill BH, Norbeck J, et al. An open-label study of a functional opioid κ antagonist in the treatment of opioid dependence. J Subst Abuse Treat. 2000;18(3):277–81. https://doi.org/10.1016/S0740-5472(99)00074-4.

    Article  CAS  PubMed  Google Scholar 

  51. Schottenfeld RS, Pakes J, O'Connor P, Chawarski M, Oliveto A, Kosten TR. Thrice-weekly versus daily buprenorphine maintenance. Biol Psychiatry. 2000;47(12):1072–9. https://doi.org/10.1016/s0006-3223(99)00270-x.

    Article  CAS  PubMed  Google Scholar 

  52. Gryczynski J, Mitchell SG, Jaffe JH, Kelly SM, Myers CP, O'Grady KE, et al. Retention in methadone and buprenorphine treatment among African Americans. J Subst Abuse Treat. 2013;45(3):287–92. https://doi.org/10.1016/j.jsat.2013.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hser Y-I, Saxon AJ, Huang D, Hasson A, Thomas C, Hillhouse M, et al. Treatment retention among patients randomized to buprenorphine/naloxone compared to methadone in a multi-site trial. Addiction. 2014;109(1):79–877. https://doi.org/10.1111/add.12333.

    Article  PubMed  Google Scholar 

  54. Mattick RP, Kimber J, Breen C, Davoli M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev. 2002. https://doi.org/10.1002/14651858.Cd002207.

    Article  PubMed  Google Scholar 

  55. Gerra G, Borella F, Zaimovic A, Moi G, Bussandri M, Bubici C, et al. Buprenorphine versus methadone for opioid dependence: predictor variables for treatment outcome. Drug Alcohol Depend. 2004;75(1):37–45. https://doi.org/10.1016/j.drugalcdep.2003.11.017.

    Article  CAS  PubMed  Google Scholar 

  56. Fiellin DA, Schottenfeld RS, Cutter CJ, Moore BA, Barry DT, O’Connor PG. Primary care-based buprenorphine taper vs maintenance therapy for prescription opioid dependence: a randomized clinical trial. JAMA Intern Med. 2014;174(12):1947–54. https://doi.org/10.1001/jamainternmed.2014.5302.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee JD, Nunes EV, Novo P, Bachrach K, Bailey GL, Bhatt S, et al. Comparative effectiveness of extended-release naltrexone versus buprenorphine-naloxone for opioid relapse prevention (X:BOT): a multicentre, open-label, randomised controlled trial. Lancet. 2018;391(10118):309–18. https://doi.org/10.1016/S0140-6736(17)32812-X.

    Article  CAS  PubMed  Google Scholar 

  58. Li X, Shorter D, Kosten TR. Buprenorphine in the treatment of opioid addiction: opportunities, challenges and strategies. Expert Opin Pharmacother. 2014;15(15):2263–75. https://doi.org/10.1517/14656566.2014.955469.

    Article  CAS  PubMed  Google Scholar 

  59. Pickworth WB, Johnson RE, Holicky BA, Cone EJ. Subjective and physiologic effects of intravenous buprenorphine in humans. Clin Pharmacol Ther. 1993;53(5):570–6. https://doi.org/10.1038/clpt.1993.72.

    Article  CAS  PubMed  Google Scholar 

  60. Comer SD, Sullivan MA, Walker EA. Comparison of intravenous buprenorphine and methadone self-administration by recently detoxified heroin-dependent individuals. J Pharmacol Exp Ther. 2005;315(3):1320–30. https://doi.org/10.1124/jpet.105.090423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andraka-Christou B, Gabriel M, Madeira J, Silverman RD. Court personnel attitudes towards medication-assisted treatment: A state-wide survey. J Subst Abuse Treat. 2019;104:72–82. https://doi.org/10.1016/j.jsat.2019.06.011.

    Article  PubMed  Google Scholar 

  62. Johansson BA, Berglund M, Lindgren A. Efficacy of maintenance treatment with naltrexone for opioid dependence: a meta-analytical review. Addiction. 2006;101(4):491–503. https://doi.org/10.1111/j.1360-0443.2006.01369.x.

    Article  PubMed  Google Scholar 

  63. Sullivan MA, Bisaga A, Glass A, Mishlen K, Pavlicova M, Carpenter KM, et al. Opioid use and dropout in patients receiving oral naltrexone with or without single administration of injection naltrexone. Drug Alcohol Depend. 2015;147:122–9. https://doi.org/10.1016/j.drugalcdep.2014.11.028.

    Article  CAS  PubMed  Google Scholar 

  64. Sullivan MA, Bisaga A, Pavlicova M, Carpenter KM, Choi CJ, Mishlen K, et al. A randomized trial comparing extended-release injectable suspension and oral naltrexone, both combined with behavioral therapy, for the treatment of opioid use disorder. A J Psychiatry. 2019;176(2):129–37. https://doi.org/10.1176/appi.ajp.2018.17070732.

    Article  Google Scholar 

  65. Jarvis BP, Holtyn AF, Subramaniam S, Tompkins DA, Oga EA, Bigelow GE, et al. Extended-release injectable naltrexone for opioid use disorder: a systematic review. Addiction. 2018;113(7):1188–209. https://doi.org/10.1111/add.14180.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Strang J, Volkow ND, Degenhardt L, Hickman M, Johnson K, Koob GF, et al. Opioid use disorder. Nat Rev Dis Prim. 2020;6(1):3. https://doi.org/10.1038/s41572-019-0137-5.

    Article  PubMed  Google Scholar 

  67. Rehman SU, Maqsood MH, Bajwa H, Tameez UDA, Malik MN. Clinical efficacy and safety profile of lofexidine hydrochloride in treating opioid withdrawal symptoms: a review of literature. Cureus. 2019;11(6):e4827. https://doi.org/10.7759/cureus.4827.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stotts AL, Dodrill CL, Kosten TR. Opioid dependence treatment: options in pharmacotherapy. Expert Opin Pharmacother. 2009;10(11):1727–40. https://doi.org/10.1517/14656560903037168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561. https://doi.org/10.1038/nrn2515.

    Article  CAS  PubMed  Google Scholar 

  70. Peters J, De Vries TJ. Glutamate mechanisms underlying opiate memories. Cold Spring Harbor Perspect Med. 2012;2(9):a012088. https://doi.org/10.1101/cshperspect.a012088.

    Article  CAS  Google Scholar 

  71. Kruyer A, Chioma VC, Kalivas PW. The opioid-addicted tetrapartite synapse. Biol Psychiatry. 2020. https://doi.org/10.1016/j.biopsych.2019.05.025.

    Article  PubMed  Google Scholar 

  72. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, et al. Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci. 2011;108(39):16446–50. https://doi.org/10.1073/pnas.1105418108.

    Article  PubMed  Google Scholar 

  73. Bossert JM, Adhikary S, St Laurent R, Marchant NJ, Wang HL, Morales M, et al. Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats. Psychopharmacology. 2016;233(10):1991–2004. https://doi.org/10.1007/s00213-015-4060-5.

    Article  CAS  PubMed  Google Scholar 

  74. Wang N, Ge F, Cui C, Li Y, Sun X, Sun L, et al. Role of glutamatergic projections from the ventral CA1 to infralimbic cortex in context-induced reinstatement of heroin seeking. Neuropsychopharmacology. 2018;43(6):1373–84. https://doi.org/10.1038/npp.2017.279.

    Article  CAS  PubMed  Google Scholar 

  75. Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011;16(10):974–86. https://doi.org/10.1038/mp.2011.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. LaLumiere RT, Kalivas PW. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci. 2008;28(12):3170–7. https://doi.org/10.1523/jneurosci.5129-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW. Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci. 2011;108(48):19407–12. https://doi.org/10.1073/pnas.1112052108.

    Article  PubMed  Google Scholar 

  78. Ma YY, Chu NN, Guo CY, Han JS, Cui CL. NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp Neurol. 2007;203(2):309–19. https://doi.org/10.1016/j.expneurol.2006.08.014.

    Article  CAS  PubMed  Google Scholar 

  79. Van den Oever MC, Goriounova NA, Wan Li K, Van der Schors RC, Binnekade R, Schoffelmeer ANM, et al. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci. 2008;11(9):1053–8. https://doi.org/10.1038/nn.2165.

    Article  CAS  PubMed  Google Scholar 

  80. Russell SE, Puttick DJ, Sawyer AM, Potter DN, Mague S, Carlezon WA Jr, et al. Nucleus accumbens AMPA receptors are necessary for morphine-withdrawal-induced negative-affective states in rats. J Neurosci Off J Soc Neurosci. 2016;36(21):5748–62. https://doi.org/10.1523/jneurosci.2875-12.2016.

    Article  CAS  Google Scholar 

  81. Shen H-W, Scofield MD, Boger H, Hensley M, Kalivas PW. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci. 2014;34(16):5649–57. https://doi.org/10.1523/jneurosci.4564-13.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xu NJ, Bao L, Fan HP, Bao GB, Pu L, Lu YJ, et al. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci Off J Soc Neurosci. 2003;23(11):4775–844.

    Article  CAS  Google Scholar 

  83. Ozawa T, Nakagawa T, Sekiya Y, Minami M, Satoh M. Effect of gene transfer of GLT-1, a glutamate transporter, into the locus coeruleus by recombinant adenoviruses on morphine physical dependence in rats. Eur J Neurosci. 2004;19(1):221–6. https://doi.org/10.1111/j.1460-9568.2004.03101.x.

    Article  PubMed  Google Scholar 

  84. Gao JT, Jordan CJ, Bi GH, He Y, Yang HJ, Gardner EL, et al. Deletion of the type 2 metabotropic glutamate receptor increases heroin abuse vulnerability in transgenic rats. Neuropsychopharmacology. 2018;43(13):2615–26. https://doi.org/10.1038/s41386-018-0231-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu H, Lai M, Chen W, Mei D, Zhang F, Liu H, et al. N-acetylaspartylglutamate inhibits heroin self-administration and heroin-seeking behaviors induced by cue or priming in rats. Neuroscience bulletin. 2017;33(4):396–404. https://doi.org/10.1007/s12264-017-0140-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bossert JM, Liu SY, Lu L, Shaham Y. A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci. 2004;24(47):10726–30. https://doi.org/10.1523/jneurosci.3207-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brown RM, Stagnitti MR, Duncan JR, Lawrence AJ. The mGlu5 receptor antagonist MTEP attenuates opiate self-administration and cue-induced opiate-seeking behaviour in mice. Drug Alcohol Depend. 2012;123(1–3):264–8. https://doi.org/10.1016/j.drugalcdep.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  88. Lou ZZ, Chen LH, Liu HF, Ruan LM, Zhou WH. Blockade of mGluR5 in the nucleus accumbens shell but not core attenuates heroin seeking behavior in rats. Acta Pharmacol Sin. 2014;35(12):1485–92. https://doi.org/10.1038/aps.2014.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van der Kam EL, de Vry J, Tzschentke TM. Effect of 2-methyl-6-(phenylethynyl) pyridine on intravenous self-administration of ketamine and heroin in the rat. Behav Pharmacol. 2007;18(8):717–24. https://doi.org/10.1097/FBP.0b013e3282f18d58.

    Article  CAS  PubMed  Google Scholar 

  90. Palucha-Poniewiera A, Novak K, Pilc A. Group III mGlu receptor agonist, ACPT-I, attenuates morphine-withdrawal symptoms after peripheral administration in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1454–7. https://doi.org/10.1016/j.pnpbp.2009.07.029.

    Article  CAS  PubMed  Google Scholar 

  91. Kolik LG, Konstantinopolsky MA. Comparative assessment of the effectiveness of noncompetitive NMDA receptor antagonists amantadine and hemantane in morphine withdrawal syndrome model. Bull Exp Biol Med. 2019;166(6):739–43. https://doi.org/10.1007/s10517-019-04430-2.

    Article  CAS  PubMed  Google Scholar 

  92. Ma YY, Yu P, Guo CY, Cui CL. Effects of ifenprodil on morphine-induced conditioned place preference and spatial learning and memory in rats. Neurochem Res. 2011;36(3):383–91. https://doi.org/10.1007/s11064-010-0342-9.

    Article  CAS  PubMed  Google Scholar 

  93. Xi ZX, Stein EA. Blockade of ionotropic glutamatergic transmission in the ventral tegmental area reduces heroin reinforcement in rat. Psychopharmacology. 2002;164(2):144–50. https://doi.org/10.1007/s00213-002-1190-3.

    Article  CAS  PubMed  Google Scholar 

  94. Douglas JR-W, Peter WK. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS & neurological disorders. Drug Targets. 2015;14(6):745–56. https://doi.org/10.2174/1871527314666150529144655.

    Article  CAS  Google Scholar 

  95. Rawls SM, Baron DA, Kim J. Beta-Lactam antibiotic inhibits development of morphine physical dependence in rats. Behav Pharmacol. 2010;21(2):161–4. https://doi.org/10.1097/FBP.0b013e328337be10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rawls SM, Zielinski M, Patel H, Sacavage S, Baron DA, Patel D. Beta-lactam antibiotic reduces morphine analgesic tolerance in rats through GLT-1 transporter activation. Drug Alcohol Depend. 2010;107(2–3):261–3. https://doi.org/10.1016/j.drugalcdep.2009.10.010.

    Article  CAS  PubMed  Google Scholar 

  97. McClure EA, Gipson CD, Malcolm RJ, Kalivas PW, Gray KM. Potential role of N-acetylcysteine in the management of substance use disorders. CNS Drugs. 2014;28(2):95–106. https://doi.org/10.1007/s40263-014-0142-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bisaga A, Comer SD, Ward AS, Popik P, Kleber HD, Fischman MW. The NMDA antagonist memantine attenuates the expression of opioid physical dependence in humans. Psychopharmacology. 2001;157(1):1–10. https://doi.org/10.1007/s002130100739.

    Article  CAS  PubMed  Google Scholar 

  99. Comer SD, Sullivan MA. Memantine produces modest reductions in heroin-induced subjective responses in human research volunteers. Psychopharmacology. 2007;193(2):235–45. https://doi.org/10.1007/s00213-007-0775-2.

    Article  CAS  PubMed  Google Scholar 

  100. Akerele E, Bisaga A, Sullivan MA, Garawi F, Comer SD, Thomas AA, et al. Dextromethorphan and quinidine combination for heroin detoxification. Am J Addict. 2008;17(3):176–80. https://doi.org/10.1080/10550490802019543.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318. https://doi.org/10.1016/s0306-4522(96)00428-9.

    Article  CAS  PubMed  Google Scholar 

  102. Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015;16:579. https://doi.org/10.1038/nrn4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19030833.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wenzel JM, Cheer JF. Endocannabinoid regulation of reward and reinforcement through interaction with dopamine and endogenous opioid signaling. Neuropsychopharmacology. 2018;43(1):103–15. https://doi.org/10.1038/npp.2017.126.

    Article  CAS  PubMed  Google Scholar 

  105. Fattore L, Deiana S, Spano SM, Cossu G, Fadda P, Scherma M, et al. Endocannabinoid system and opioid addiction: behavioural aspects. Pharmacol Biochem Behav. 2005;81(2):343–59. https://doi.org/10.1016/j.pbb.2005.01.031.

    Article  CAS  PubMed  Google Scholar 

  106. Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999;283(5400):401–4. https://doi.org/10.1126/science.283.5400.401.

    Article  CAS  PubMed  Google Scholar 

  107. Caille S, Parsons LH. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology. 2006;31(4):804–13. https://doi.org/10.1038/sj.npp.1300848.

    Article  CAS  PubMed  Google Scholar 

  108. Alvarez-Jaimes L, Polis I, Parsons LH. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology. 2008;33(10):2483–93. https://doi.org/10.1038/sj.npp.1301630.

    Article  CAS  PubMed  Google Scholar 

  109. He XH, Jordan CJ, Vemuri K, Bi GH, Zhan J, Gardner EL, et al. Cannabinoid CB1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin. 2019;40(3):365–73. https://doi.org/10.1038/s41401-018-0059-x.

    Article  CAS  PubMed  Google Scholar 

  110. De Vries TJ, de Vries W, Janssen MC, Schoffelmeer AN. Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav Brain Res. 2005;161(1):164–8. https://doi.org/10.1016/j.bbr.2005.02.021.

    Article  CAS  PubMed  Google Scholar 

  111. Bhargava HN. Effect of some cannabinoids on naloxone-precipitated abstinence in morphine-dependent mice. Psychopharmacology. 1976;49(3):267–70. https://doi.org/10.1007/bf00426828.

    Article  CAS  PubMed  Google Scholar 

  112. Lichtman AH, Sheikh SM, Loh HH, Martin BR. Opioid and cannabinoid modulation of precipitated withdrawal in delta(9)-tetrahydrocannabinol and morphine-dependent mice. J Pharmacol Exp Ther. 2001;298(3):1007–144.

    CAS  PubMed  Google Scholar 

  113. Nguyen JD, Grant Y, Creehan KM, Hwang CS, Vandewater SA, Janda KD, et al. Δ(9)-tetrahydrocannabinol attenuates oxycodone self-administration under extended access conditions. Neuropharmacology. 2019;151:127–35. https://doi.org/10.1016/j.neuropharm.2019.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maguire DR, France CP. Effects of daily delta-9-tetrahydrocannabinol treatment on heroin self-administration in rhesus monkeys. Behav Pharmacol. 2016;27(2–3 Spec Issue):249–57. https://doi.org/10.1097/fbp.0000000000000192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ren Y, Whittard J, Higuera-Matas A, Morris CV, Hurd YL. Cannabidiol, a nonpsychotropic component of cannabis, inhibits cue-induced heroin seeking and normalizes discrete mesolimbic neuronal disturbances. J Neurosci. 2009;29(47):14764–9. https://doi.org/10.1523/jneurosci.4291-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sloan ME, Gowin JL, Ramchandani VA, Hurd YL, Le Foll B. The endocannabinoid system as a target for addiction treatment: trials and tribulations. Neuropharmacology. 2017;124:73–83. https://doi.org/10.1016/j.neuropharm.2017.05.031.

    Article  CAS  PubMed  Google Scholar 

  117. Navarro M, Carrera MRA, del Arco I, Trigo JM, Koob GF, de Fonseca FR. Cannabinoid receptor antagonist reduces heroin self-administration only in dependent rats. Eur J Pharmacol. 2004;501(1):235–7. https://doi.org/10.1016/j.ejphar.2004.08.022.

    Article  CAS  PubMed  Google Scholar 

  118. Bisaga A, Sullivan MA, Glass A, Mishlen K, Pavlicova M, Haney M, et al. The effects of dronabinol during detoxification and the initiation of treatment with extended release naltrexone. Drug Alcohol Depend. 2015;154:38–45. https://doi.org/10.1016/j.drugalcdep.2015.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jicha CJ, Lofwall MR, Nuzzo PA, Babalonis S, Elayi SC, Walsh SL. Safety of oral dronabinol during opioid withdrawal in humans. Drug Alcohol Depend. 2015;157:179–83. https://doi.org/10.1016/j.drugalcdep.2015.09.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lofwall MR, Babalonis S, Nuzzo PA, Elayi SC, Walsh SL. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans. Drug Alcohol Depend. 2016;164:143–50. https://doi.org/10.1016/j.drugalcdep.2016.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nguyen T, Thomas BF, Zhang Y. Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: current approaches for therapeutics development. Curr Top Med Chem. 2019;19(16):1418–35. https://doi.org/10.2174/1568026619666190708164841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (Orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015. https://doi.org/10.1523/jneurosci.18-23-09996.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85. https://doi.org/10.1016/s0092-8674(00)80949-6.

    Article  CAS  PubMed  Google Scholar 

  124. DiLeone RJ, Georgescu D, Nestler EJ. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003;73(6):759–68. https://doi.org/10.1016/S0024-3205(03)00408-9.

    Article  CAS  PubMed  Google Scholar 

  125. Ho CY, Berridge KC. An orexin hotspot in ventral pallidum amplifies hedonic 'liking' for sweetness. Neuropsychopharmacology. 2013;38(9):1655–64. https://doi.org/10.1038/npp.2013.62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40. https://doi.org/10.1016/s0140-6736(99)05582-8.

    Article  CAS  PubMed  Google Scholar 

  127. Chiou LC, Lee HJ, Ho YC, Chen SP, Liao YY, Ma CH, et al. Orexins/hypocretins: pain regulation and cellular actions. Curr Pharm Des. 2010;16(28):3089–100. https://doi.org/10.2174/138161210793292483.

    Article  CAS  PubMed  Google Scholar 

  128. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437(7058):556–9. https://doi.org/10.1038/nature04071.

    Article  CAS  PubMed  Google Scholar 

  129. Fadel J, Deutch AY. Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111(2):379–87. https://doi.org/10.1016/S0306-4522(02)00017-9.

    Article  CAS  PubMed  Google Scholar 

  130. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci Off J Soc Neurosci. 2003;23(8):3106–11.

    Article  CAS  Google Scholar 

  131. James MH, Mahler SV, Moorman DE, Aston-Jones G. A decade of orexin/hypocretin and addiction: where are we now? Curr Top Behav Neurosci. 2017;33:247–81. https://doi.org/10.1007/7854_2016_57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G. Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav Brain Res. 2007;183(1):43–51. https://doi.org/10.1016/j.bbr.2007.05.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ghaemi-Jandabi M, Azizi H, Ahmadi-Soleimani SM, Semnanian S. Intracoerulear microinjection of orexin-A induces morphine withdrawal-like signs in rats. Brain Res Bull. 2017;130:107–11. https://doi.org/10.1016/j.brainresbull.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  134. Hooshmand B, Azizi H, Javan M, Semnanian S. Intra-LC microinjection of orexin type-1 receptor antagonist SB-334867 attenuates the expression of glutamate-induced opiate withdrawal like signs during the active phase in rats. Neurosci Lett. 2017;636:276–81. https://doi.org/10.1016/j.neulet.2016.10.051.

    Article  CAS  PubMed  Google Scholar 

  135. Davoudi M, Azizi H, Mirnajafi-Zadeh J, Semnanian S. Decrease of inhibitory synaptic currents of locus coeruleus neurons via orexin type 1 receptors in the context of naloxone-induced morphine withdrawal. J Physiol Sci JPS. 2019;69(2):281–93. https://doi.org/10.1007/s12576-018-0645-1.

    Article  CAS  PubMed  Google Scholar 

  136. Li Y, Wang H, Qi K, Chen X, Li S, Sui N, et al. Orexins in the midline thalamus are involved in the expression of conditioned place aversion to morphine withdrawal. Physiol Behav. 2011;102(1):42–50. https://doi.org/10.1016/j.physbeh.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

  137. Sharf R, Sarhan M, DiLeone RJ. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatr. 2008;64(3):175–83. https://doi.org/10.1016/j.biopsych.2008.03.006.

    Article  CAS  Google Scholar 

  138. Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull. 2018;137:217–24. https://doi.org/10.1016/j.brainresbull.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  139. Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides. 2017;66:45–51. https://doi.org/10.1016/j.npep.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  140. Alizamini MM, Kavianpour M, Karimi-Haghighi S, Fatahi Z, Haghparast A. Intra-hippocampal administration of orexin receptor antagonists dose-dependently attenuates reinstatement of morphine seeking behavior in extinguished rats. Peptides. 2018;110:40–6. https://doi.org/10.1016/j.peptides.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  141. Edalat P, Kavianpour M, Zarrabian S, Haghparast A. Role of orexin-1 and orexin-2 receptors in the CA1 region of hippocampus in the forced swim stress- and food deprivation-induced reinstatement of morphine seeking behaviors in rats. Brain Res Bull. 2018;142:25–322. https://doi.org/10.1016/j.brainresbull.2018.06.016.

    Article  CAS  PubMed  Google Scholar 

  142. Schmeichel BE, Barbier E, Misra KK, Contet C, Schlosburg JE, Grigoriadis D, et al. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology. 2015;40(5):1123–9. https://doi.org/10.1038/npp.2014.293.

    Article  CAS  PubMed  Google Scholar 

  143. Azizi H, Mirnajafi-Zadeh J, Rohampour K, Semnanian S. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci Lett. 2010;482(3):255–9. https://doi.org/10.1016/j.neulet.2010.07.050.

    Article  CAS  PubMed  Google Scholar 

  144. Laorden ML, Ferenczi S, Pinter-Kubler B, Gonzalez-Martin LL, Lasheras MC, Kovacs KJ, et al. Hypothalamic orexin–a neurons are involved in the response of the brain stress system to morphine withdrawal. PLoS ONE. 2012;7(5):e36871. https://doi.org/10.1371/journal.pone.0036871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiol Behav. 2010;100(5):419–28. https://doi.org/10.1016/j.physbeh.2010.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Campbell EJ, Marchant NJ, Lawrence AJ. A sleeping giant: Suvorexant for the treatment of alcohol use disorder? Brain Res. 2018. https://doi.org/10.1016/j.brainres.2018.08.005.

    Article  PubMed  Google Scholar 

  147. Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res. 2018. https://doi.org/10.1016/j.brainres.2018.11.023.

    Article  PubMed  Google Scholar 

  148. Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res. 2019. https://doi.org/10.1016/j.brainres.2019.02.026.

    Article  PubMed  PubMed Central  Google Scholar 

  149. James MH, Fragale JE, Aurora RN, Cooperman NA, Langleben DD, Aston-Jones G. Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: why sleep on this any longer? Neuropsychopharmacology. 2020. https://doi.org/10.1038/s41386-020-0619-x.

    Article  PubMed  Google Scholar 

  150. Born S, Gauvin DV, Mukherjee S, Briscoe R. Preclinical assessment of the abuse potential of the orexin receptor antagonist, suvorexant. Regul Toxicol Pharmacol RTP. 2017;86:181–92. https://doi.org/10.1016/j.yrtph.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  151. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66. https://doi.org/10.1146/annurev.med.60.042307.110802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Müller CP, Homberg JR. The role of serotonin in drug use and addiction. Behav Brain Res. 2015;277:146–92. https://doi.org/10.1016/j.bbr.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  153. Dunn KE, Huhn AS, Bergeria CL, Gipson CD, Weerts EM. Non-opioid neurotransmitter systems that contribute to the opioid withdrawal syndrome: a review of preclinical and human evidence. J Pharmacol Exp Ther. 2019;371(2):422–52. https://doi.org/10.1124/jpet.119.258004.

    Article  CAS  PubMed  Google Scholar 

  154. Fadda P, Scherma M, Fresu A, Collu M, Fratta W. Dopamine and serotonin release in dorsal striatum and nucleus accumbens is differentially modulated by morphine in DBA/2J and C57BL/6J mice. Synapse (New York, NY). 2005;56(1):29–38. https://doi.org/10.1002/syn.20122.

    Article  CAS  Google Scholar 

  155. Imperato A, Angelucci L. 5-HT3 receptors control dopamine release in the nucleus accumbens of freely moving rats. Neurosci Lett. 1989;101(2):214–7. https://doi.org/10.1016/0304-3940(89)90533-8.

    Article  CAS  PubMed  Google Scholar 

  156. Bland ST, Twining C, Schmid MJ, Der-Avakian A, Watkins LR, Maier SF. Stress potentiation of morphine-induced dopamine efflux in the nucleus accumbens shell is dependent upon stressor uncontrollability and is mediated by the dorsal raphe nucleus. Neuroscience. 2004;126(3):705–15. https://doi.org/10.1016/j.neuroscience.2004.04.025.

    Article  CAS  PubMed  Google Scholar 

  157. Tao R, Auerbach SB. Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. J Neurochem. 1994;63(2):517–24. https://doi.org/10.1046/j.1471-4159.1994.63020517.x.

    Article  CAS  PubMed  Google Scholar 

  158. Goeldner C, Lutz PE, Darcq E, Halter T, Clesse D, Ouagazzal AM, et al. Impaired emotional-like behavior and serotonergic function during protracted abstinence from chronic morphine. Biol Psychiatry. 2011;69(3):236–44. https://doi.org/10.1016/j.biopsych.2010.08.021.

    Article  CAS  PubMed  Google Scholar 

  159. Higgins GA, Nguyen P, Joharchi N, Sellers EM. Effects of 5-HT3 receptor antagonists on behavioural measures of naloxone-precipitated opioid withdrawal. Psychopharmacology. 1991;105(3):322–8. https://doi.org/10.1007/bf02244425.

    Article  CAS  PubMed  Google Scholar 

  160. Wu X, Pang G, Zhang YM, Li G, Xu S, Dong L, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Neurosci Lett. 2015;607:23–8. https://doi.org/10.1016/j.neulet.2015.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang G, Wu X, Zhang YM, Liu H, Jiang Q, Pang G, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice. Neuropharmacology. 2016;101:246–54. https://doi.org/10.1016/j.neuropharm.2015.09.031.

    Article  CAS  PubMed  Google Scholar 

  162. Nomikos GG, Spyraki C. Effects of ritanserin on the rewarding properties of d-amphetamine, morphine and diazepam revealed by conditioned place preference in rats. Pharmacol Biochem Behav. 1988;30(4):853–8. https://doi.org/10.1016/0091-3057(88)90110-4.

    Article  CAS  PubMed  Google Scholar 

  163. Carboni E, Acquas E, Leone P, Di Chiara G. 5HT3 receptor antagonists block morphine- and nicotine-but not amphetamine-induced reward. Psychopharmacology. 1989;97(2):175–8. https://doi.org/10.1007/bf00442245.

    Article  CAS  PubMed  Google Scholar 

  164. Acquas E, Carboni E, Leone P, Di Chiara G. 5-HT3 receptors antagonists block morphine- and nicotine-but not amphetamine-induced place-preference conditioning. Pharmacol Res Commun. 1988;20(12):1113–4. https://doi.org/10.1016/s0031-6989(88)80752-5.

    Article  CAS  PubMed  Google Scholar 

  165. Carboni E, Acquas E, Leone P, Perezzani L, Di Chiara G. 5-HT3 receptor antagonists block morphine- and nicotine-induced place-preference conditioning. Eur J Pharmacol. 1988;151(1):159–60. https://doi.org/10.1016/0014-2999(88)90710-8.

    Article  CAS  PubMed  Google Scholar 

  166. Higgins GA, Joharchi N, Nguyen P, Sellers EM. Effect of the 5-HT3 receptor antagonists, MDL72222 and ondansetron on morphine place conditioning. Psychopharmacology. 1992;106(3):315–20. https://doi.org/10.1007/bf02245411.

    Article  CAS  PubMed  Google Scholar 

  167. Hui SC, Sevilla EL, Ogle CW. 5-HT3 antagonists reduce morphine self-administration in rats. Br J Pharmacol. 1993;110(4):1341–6. https://doi.org/10.1111/j.1476-5381.1993.tb13966.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Higgins GA, Wang Y, Corrigall WA, Sellers EM. Influence of 5-HT3 receptor antagonists and the indirect 5-HT agonist, dexfenfluramine, on heroin self-administration in rats. Psychopharmacology. 1994;114(4):611–9. https://doi.org/10.1007/bf02244992.

    Article  CAS  PubMed  Google Scholar 

  169. Higgins GA, Wang Y, Sellers EM. Preliminary findings with the indirect 5-HT agonist dexfenfluramine on heroin discrimination and self-administration in rats. Pharmacol Biochem Behav. 1993;45(4):963–6. https://doi.org/10.1016/0091-3057(93)90148-m.

    Article  CAS  PubMed  Google Scholar 

  170. Neelakantan H, Holliday ED, Fox RG, Stutz SJ, Comer SD, Haney M, et al. Lorcaserin suppresses oxycodone self-administration and relapse vulnerability in rats. ACS Chem Neurosci. 2017;8(5):1065–73. https://doi.org/10.1021/acschemneuro.6b00413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gerak LR, Collins GT, Maguire DR, France CP. Effects of lorcaserin on reinstatement of responding previously maintained by cocaine or remifentanil in rhesus monkeys. Exp Clin Psychopharmacol. 2019;27(1):78–86. https://doi.org/10.1037/pha0000234.

    Article  CAS  PubMed  Google Scholar 

  172. Farren CK, O'Malley S. A pilot double blind placebo controlled trial of sertraline with naltrexone in the treatment of opiate dependence. Am J Addict. 2002;11(3):228–34. https://doi.org/10.1080/10550490290088009.

    Article  PubMed  Google Scholar 

  173. Chu LF, Sun J, Clemenson A, Erlendson MJ, Rico T, Cornell E, et al. Ondansetron does not reduce withdrawal in patients with physical dependence on chronic opioid therapy. J Addict Med. 2017;11(5):342–9. https://doi.org/10.1097/adm.0000000000000321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2009;35:217. https://doi.org/10.1038/npp.2009.110.

    Article  PubMed Central  Google Scholar 

  175. Nora D, Volkow MD. Personalizing the treatment of substance use disorders. Am J Psychiatry. 2020;177(2):113–6. https://doi.org/10.1176/appi.ajp.2019.19121284.

    Article  Google Scholar 

  176. Stewart JL, May AC, Aupperle RL, Bodurka J. Forging neuroimaging targets for recovery in opioid use disorder. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2019.00117.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Kalivas.

Ethics declarations

Funding

This work was completed with funding supported from the National Institute of Drug Abuse (NIDA), 5T32 DA7288-28 (RMC) and 2RO1 DA003906-37, 1 P50 DA046373-01, 1U01 DA04530001A1 (PWK), and a VA Merit Award BX004727 (PWK).

Conflict of interest

Peter Kalivas and Reda Chalhoub have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalhoub, R.M., Kalivas, P.W. Non-Opioid Treatments for Opioid Use Disorder: Rationales and Data to Date. Drugs 80, 1509–1524 (2020). https://doi.org/10.1007/s40265-020-01373-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01373-1

Navigation