Skip to main content
Log in

Effects of Ifenprodil on Morphine-Induced Conditioned Place Preference and Spatial Learning and Memory in Rats

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Drug addiction, as well as learning and memory, share common mechanisms in terms of neural circuits and intracellular signaling pathways. In the present study, the role of N-methyl-D-aspartate (NMDA) receptors, particularly those containing NR2B subunits, in morphine-induced conditioned place preference (CPP) and Morris water maze (MWM) learning and memory task was investigated. CPP was used as a paradigm for assessing the rewarding effect of morphine, and MWM was used to measure spatial learning and memory in male Sprague–Dawley rats. We found that ifenprodil, an antagonist highly selective for NR2B-containing NMDA receptors, dose-dependently blocked the development, maintenance and reinstatement of morphine-induced CPP, without evident impairment of the acquisition and retrieval of spatial memory in the MWM task. However, the consolidation of spatial memory was disrupted by a high dose (10 mg/kg) of ifenprodil. These results clearly demonstrate that NR2B-containing NMDA receptors are actively involved in addiction memory induced by morphine conditioning, but not in the acquisition and retrieval of spatial learning and memory. In conclusion, NR2B-containing NMDA receptors can be considered potential targets for the treatment of opiate addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology (Berl) 99:151–155

    Article  CAS  Google Scholar 

  2. Acquas E, Di Chiara G (1994) D1 receptor blockade stereospecifically impairs the acquisition of drug-conditioned place preference and place aversion. Behav Pharmacol 5:555–569

    Article  CAS  PubMed  Google Scholar 

  3. Bossert JM, Ghitza UE, Lu L, Epstein DH, Shaham Y (2005) Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur J Pharmacol 526:36–50

    Article  CAS  PubMed  Google Scholar 

  4. Bozarth M (1987) Conditioned place preference: a parametric analysis using systemic heroin injections, methods of assessing the reinforcing properties of abused drugs. Springer, New York, pp 241–273

    Google Scholar 

  5. Chen JH, Liang J, Wang GB, Han JS, Cui CL (2005) Repeated 2 Hz peripheral electrical stimulations suppress morphine-induced CPP and improve spatial memory ability in rats. Exp Neurol 194:550–556

    Article  CAS  PubMed  Google Scholar 

  6. Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41:143–210

    CAS  PubMed  Google Scholar 

  7. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  8. Dai H, Carey RJ (1994) The NMDA antagonist MK-801 can impair attention to exteroceptive stimuli. Behav Brain Res 62:149–156

    Article  CAS  PubMed  Google Scholar 

  9. De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJ (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10:3565–3571

    Article  PubMed  Google Scholar 

  10. Ellenbogen JM, Payne JD, Stickgold R (2006) The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr Opin Neurobiol 16:716–722

    Article  CAS  PubMed  Google Scholar 

  11. Everitt BJ, Morris KA, O’Brien A, Robbins TW (1991) The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience 42:1–18

    Article  CAS  PubMed  Google Scholar 

  12. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  CAS  PubMed  Google Scholar 

  13. Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23:S64–S70

    Article  CAS  PubMed  Google Scholar 

  14. Huang CC, Liang YC, Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem 276:48108–48117

    CAS  PubMed  Google Scholar 

  15. Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    Article  PubMed  Google Scholar 

  16. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703

    Article  CAS  PubMed  Google Scholar 

  17. Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  CAS  PubMed  Google Scholar 

  18. Kew JN, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol 497(Pt 3):761–772

    CAS  PubMed  Google Scholar 

  19. Kiss L, Cheng G, Bednar B, Bednar RA, Bennett PB, Kane SA, McIntyre CJ, McCauley JA, Koblan KS (2005) In vitro characterization of novel NR2B selective NMDA receptor antagonists. Neurochem Int 46:453–464

    Article  CAS  PubMed  Google Scholar 

  20. Kohl BK, Dannhardt G (2001) The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem 8:1275–1289

    CAS  PubMed  Google Scholar 

  21. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  CAS  PubMed  Google Scholar 

  22. Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550

    Article  CAS  PubMed  Google Scholar 

  23. Ma YY, Chu NN, Guo CY, Han JS, Cui CL (2007) NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp Neurol 203:309–319

    Article  CAS  PubMed  Google Scholar 

  24. Ma YY, Guo CY, Yu P, Lee DY, Han JS, Cui CL (2006) The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Exp Neurol 200:343–355

    Article  CAS  PubMed  Google Scholar 

  25. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  CAS  PubMed  Google Scholar 

  26. Narita M, Aoki T, Suzuki T (2000) Molecular evidence for the involvement of NR2B subunit containing N-methyl-D-aspartate receptors in the development of morphine-induced place preference. Neuroscience 101:601–606

    Article  CAS  PubMed  Google Scholar 

  27. Nazarian A, Russo SJ, Festa ED, Kraish M, Quinones-Jenab V (2004) The role of D1 and D2 receptors in the cocaine conditioned place preference of male and female rats. Brain Res Bull 63:295–299

    Article  CAS  PubMed  Google Scholar 

  28. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  29. Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    Article  CAS  PubMed  Google Scholar 

  30. Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32

    Article  CAS  PubMed  Google Scholar 

  31. Noda Y, Nabeshima T (2004) Involvement of signal transduction cascade via dopamine-D1 receptors in phencyclidine dependence. Ann N Y Acad Sci 1025:62–68

    Article  CAS  PubMed  Google Scholar 

  32. Norrholm SD, Bibb JA, Nestler EJ, Ouimet CC, Taylor JR, Greengard P (2003) Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116:19–22

    Article  CAS  PubMed  Google Scholar 

  33. Pani L, Kuzmin A, Martellotta MC, Gessa GL, Fratta W (1991) The calcium antagonist PN 200–110 inhibits the reinforcing properties of cocaine. Brain Res Bull 26:445–447

    Article  CAS  PubMed  Google Scholar 

  34. Perin-Dureau F, Rachline J, Neyton J, Paoletti P (2002) Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J Neurosci 22:5955–5965

    CAS  PubMed  Google Scholar 

  35. Pizzi WJ, Cook DF (1996) Conditioned taste aversion is a confound in behavioral studies that report a reduction in the reinforcing effects of drugs. Pharmacol Biochem Behav 53:243–247

    Article  CAS  PubMed  Google Scholar 

  36. Popik P, Mamczarz J, Fraczek M, Widla M, Hesselink M, Danysz W (1998) Inhibition of reinforcing effects of morphine and naloxone-precipitated opioid withdrawal by novel glycine site and uncompetitive NMDA receptor antagonists. Neuropharmacology 37:1033–1042

    Article  CAS  PubMed  Google Scholar 

  37. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2005) NMDA glutamate but not dopamine antagonists blocks drug-induced reinstatement of morphine place preference. Brain Res Bull 64:493–503

    Article  CAS  PubMed  Google Scholar 

  38. Robbins TW, Everitt BJ (2002) Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem 78:625–636

    Article  CAS  PubMed  Google Scholar 

  39. Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266

    Article  CAS  PubMed  Google Scholar 

  40. Robinson TE, Kolb B (1999) Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 33:160–162

    Article  CAS  PubMed  Google Scholar 

  41. Scannevin RH, Huganir RL (2000) Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 1:133–141

    Article  CAS  PubMed  Google Scholar 

  42. Shi XD, Wang GB, Ma YY, Ren W, Luo F, Cui CL, Han JS (2004) Repeated peripheral electrical stimulations suppress both morphine-induced CPP and reinstatement of extinguished CPP in rats: accelerated expression of PPE and PPD mRNA in NAc implicated. Brain Res Mol Brain Res 130:124–133

    Article  CAS  PubMed  Google Scholar 

  43. Sorge RE, Rajabi H, Stewart J (2005) Rats maintained chronically on buprenorphine show reduced heroin and cocaine seeking in tests of extinction and drug-induced reinstatement. Neuropsychopharmacology 30:1681–1692

    Article  CAS  PubMed  Google Scholar 

  44. Stephenson FA (2001) Subunit characterization of NMDA receptors. Curr Drug Targets 2:233–239

    Article  CAS  PubMed  Google Scholar 

  45. Stewart J (1984) Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacol Biochem Behav 20:917–923

    Article  CAS  PubMed  Google Scholar 

  46. Stickgold R, Walker MP (2007) Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8:331–343

    Article  PubMed  Google Scholar 

  47. Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology (Berl) 177:315–323

    Article  CAS  Google Scholar 

  48. Takehara-Nishiuchi K, McNaughton BL (2008) Spontaneous changes of neocortical code for associative memory during consolidation. Science 322:960–963

    Article  CAS  PubMed  Google Scholar 

  49. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    Article  CAS  PubMed  Google Scholar 

  50. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  CAS  PubMed  Google Scholar 

  51. Tzschentke TM, Schmidt WJ (1995) N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci Lett 193:37–40

    Article  CAS  PubMed  Google Scholar 

  52. Tzschentke TM, Schmidt WJ (2003) Glutamatergic mechanisms in addiction. Mol Psychiatry 8:373–382

    Article  CAS  PubMed  Google Scholar 

  53. Valjent E, Pages C, Herve D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  54. Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (30970933) from the National Natural Science Foundation, and the National Basic Research Program (2009CB522003) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Lian Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, YY., Yu, P., Guo, CY. et al. Effects of Ifenprodil on Morphine-Induced Conditioned Place Preference and Spatial Learning and Memory in Rats. Neurochem Res 36, 383–391 (2011). https://doi.org/10.1007/s11064-010-0342-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0342-9

Keywords

Navigation