Skip to main content
Log in

Improving Translational Research Outcomes for Opioid Use Disorder Treatments

  • Opioids (A Konova and S Yip, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pharmacotherapies are the most effective means of reducing the harms associated with opioid use disorder (OUD). Translational research seeking to develop novel medications to treat OUD has been challenging due to the complex etiology of addiction. Preclinical outcome measures are often behavioral, and it is difficult, if not impossible, to fully mirror the various emotional and cognitive processes that motivate opioid use in humans. The goal of the current narrative review was to summarize the translational progression of three potential medications for OUD, which had varying levels of success.

Recent Findings

Memantine, lorcaserin, and lofexidine all showed promise in preclinical studies; however, only lofexidine was able to consistently replicate these findings in human subjects, and receive FDA approval. It was the authors’ objective to use this review to identify areas of needed improvement in translational research for OUD.

Summary

Preclinical studies vary significantly in their ability to forecast effectiveness in clinical trials. Among the various preclinical models, suppression of opioid self-administration appears to have the best predictive validity. As they model a mostly physiological phenomenon, preclinical assessments of opioid withdrawal also appear to have high predictive validity. In our review of the literature, the authors noted numerous examples of clinical trials that were underpowered, lack precision, and proper outcomes. Better-validated preclinical targets and improved design of proof-of-concept human studies should allow investigators to more efficiently develop and test medications for OUD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Collins FS, Koroshetz WJ, Volkow ND. Helping to end addiction over the long-term: the research plan for the NIH HEAL initiative. JAMA. 2018;320(2):129–30. https://doi.org/10.1001/jama.2018.8826.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Banks ML, Townsend EA, Negus SS. Testing the 10 most wanted: a preclinical algorithm to screen candidate opioid use disorder medications. Neuropsychopharmacology. 2019;44(6):1011–2. https://doi.org/10.1038/s41386-019-0336-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Negus SS, Banks ML. Medications development for opioid abuse. Cold Spring Harb Perspect Med. 2013;3(1):a012104. https://doi.org/10.1101/cshperspect.a012104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rasmussen K, White DA, Acri JB. NIDA’s medication development priorities in response to the opioid crisis: ten most wanted. Neuropsychopharmacology. 2019;44(4):657–9. https://doi.org/10.1038/s41386-018-0292-5.

    Article  PubMed  Google Scholar 

  5. Food and Drug Administration. Drug Safety Communications - FDA requests the withdrawal of the weight-loss drug Belviq, Belviq XR (lorcaserin) from the market. 2020. https://www.fda.gov/drugs/drug-safety-and-availability/fda-requests-withdrawal-weight-loss-drug-belviq-belviq-xr-lorcaserin-market. Accessed 2 Sep 2020.

  6. Thomsen WJ, Grottick AJ, Menzaghi F, Reyes-Saldana H, Espitia S, Yuskin D, et al. Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther. 2008;325(2):577–87. https://doi.org/10.1124/jpet.107.133348.

    Article  CAS  PubMed  Google Scholar 

  7. Cunningham KA, Anastasio NC (2014). Serotonin at the nexus of impulsivity and cue reactivity in cocaine addiction. Neuropharmacology 76 Pt B: 460–478. doi: https://doi.org/10.1016/j.neuropharm.2013.06.030.

  8. Jones JD, Comer SD. A review of human drug self-administration procedures. Behav Pharmacol. 2013;24(5–6):384–95. https://doi.org/10.1097/FBP.0b013e3283641c3d.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neelakantan H, Holliday ED, Fox RG, Stutz SJ, Comer SD, Haney M, et al. Lorcaserin suppresses oxycodone self-administration and relapse vulnerability in rats. ACS Chem Neurosci. 2017;8(5):1065–73. https://doi.org/10.1021/acschemneuro.6b00413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kohut SJ, Bergman J. Lorcaserin decreases the reinforcing effects of heroin, but not food, in rhesus monkeys. Eur J Pharmacol. 2018;840:28–32. https://doi.org/10.1016/j.ejphar.2018.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerak LR, Collins GT, Maguire DR, France CP. Effects of lorcaserin on reinstatement of responding previously maintained by cocaine or remifentanil in rhesus monkeys. Exp Clin Psychopharmacol. 2019;27(1):78–86. https://doi.org/10.1037/pha0000234.

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Pang G, Zhang YM, Li G, Xu S, Dong L, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Neurosci Lett. 2015;607:23–8. https://doi.org/10.1016/j.neulet.2015.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang G, Wu X, Zhang YM, Liu H, Jiang Q, Pang G, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice. Neuropharmacology. 2016;101:246–54. https://doi.org/10.1016/j.neuropharm.2015.09.031.

    Article  CAS  PubMed  Google Scholar 

  14. Panlilio LV, Secci ME, Schindler CW, Bradberry CW. Choice between delayed food and immediate opioids in rats: treatment effects and individual differences. Psychopharmacology. 2017;234(22):3361–73. https://doi.org/10.1007/s00213-017-4726-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. • Townsend EA, Negus SS, Poklis JL, Banks ML. Lorcaserin maintenance fails to attenuate heroin vs. food choice in rhesus monkeys. Drug Alcohol Depend. 2020;208:107848. https://doi.org/10.1016/j.drugalcdep.2020.107848. This is an important original research article that demonstrated that lorcaserin failed to decrease oxycodone self-administration in a preclinical choice procedure and was in agreement with findings from the clinical study by Brand et al., 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Brandt L, Jones JD, Martinez S, Manubay JM, Mogali S, Ramey T, et al. Effects of lorcaserin on oxycodone self-administration and subjective responses in participants with opioid use disorder. Drug Alcohol Depend. 2020;208:107859. https://doi.org/10.1016/j.drugalcdep.2020.107859. This is an important clinical research study demonstrating that lorcaserin failed to decrease oxycodone self-administration in a choice procedure in humans in contrast to findings by most preclinical studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banks ML, Negus SS. Repeated 7-day treatment with the 5-HT2C agonist lorcaserin or the 5-HT2A antagonist pimavanserin alone or in combination fails to reduce cocaine vs food choice in male rhesus monkeys. Neuropsychopharmacology. 2017;42(5):1082–92. https://doi.org/10.1038/npp.2016.259.

    Article  CAS  PubMed  Google Scholar 

  18. Pirtle JL, Hickman MD, Boinpelly VC, Surineni K, Thakur HK, Grasing KW. The serotonin-2C agonist lorcaserin delays intravenous choice and modifies the subjective and cardiovascular effects of cocaine: a randomized, controlled human laboratory study. Pharmacol Biochem Behav. 2019;180:52–9. https://doi.org/10.1016/j.pbb.2019.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Townsend EA, Negus SS, Banks ML. Medications development for treatment of opioid use disorder. Cold Spring Harb Perspect Med. 2020. https://doi.org/10.1101/cshperspect.a039263.

  20. Food and Drug Administration. Other action letter - Belviq (lorcaserin hydrochloride) - application number 022529Orig1s000. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022529Orig1s000OtherActionLtrs.pdf. Accessed 26 Jun 2020.

  21. Food and Drug Administration. Labeling - Belviq (lorcaserin hydrochloride) - application number 022529Orig1s000. 2016. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022529Orig1s000Lbl.pdf. Accessed 12 Oct 2020.

  22. European Medicines Agency. Withdrawal of the marketing authorisation application for Belviq (lorcaserin). 2013.

  23. Food and Drug Administration. Approval letter - Namenda (memantine hydrochloride) - application number 21-487. 2003.

  24. Food and Drug Administration. Labeling - Namenda (memantine hydrochloride) - application number 21-487. 2003.

  25. Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One. 2015;10(4):e0123289. https://doi.org/10.1371/journal.pone.0123289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunn KE, Huhn AS, Bergeria CL, Gipson CD, Weerts EM. Non-opioid neurotransmitter systems that contribute to the opioid withdrawal syndrome: a review of preclinical and human evidence. J Pharmacol Exp Ther. 2019;371(2):422–52. https://doi.org/10.1124/jpet.119.258004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levi MS, Borne RF. A review of chemical agents in the pharmacotherapy of addiction. Curr Med Chem. 2002;9(20):1807–18. https://doi.org/10.2174/0929867023368980.

    Article  CAS  PubMed  Google Scholar 

  28. Aguilar MA, Manzanedo C, Do Couto BR, Rodriguez-Arias M, Minarro J. Memantine blocks sensitization to the rewarding effects of morphine. Brain Res. 2009;1288:95–104. https://doi.org/10.1016/j.brainres.2009.06.100.

    Article  CAS  PubMed  Google Scholar 

  29. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J. Effects of NMDA receptor antagonists (MK-801 and memantine) on the acquisition of morphine-induced conditioned place preference in mice. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28(6):1035–43. https://doi.org/10.1016/j.pnpbp.2004.05.038.

    Article  CAS  Google Scholar 

  30. Semenova S, Danysz W, Bespalov A. Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. Eur J Pharmacol. 1999;378(1):1–8. https://doi.org/10.1016/s0014-2999(99)00431-8.

    Article  CAS  PubMed  Google Scholar 

  31. Chen SL, Tao PL, Chu CH, Chen SH, Wu HE, Tseng LF, et al. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats. J NeuroImmune Pharmacol. 2012;7(2):444–53. https://doi.org/10.1007/s11481-011-9337-9.

    Article  PubMed  Google Scholar 

  32. Harris AC, Rothwell PE, Gewirtz JC. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia. Psychopharmacology. 2008;196(4):649–60. https://doi.org/10.1007/s00213-007-0998-2.

    Article  CAS  PubMed  Google Scholar 

  33. Maldonado C, Cauli O, Rodrı́guez-Arias M, Aguilar MA, Miñarro J. Memantine presents different effects from MK-801 in motivational and physical signs of morphine withdrawal. Behav Brain Res 2003;144(1–2):25–35. https://doi.org/10.1016/s0166-4328(03)00044-5.

  34. Popik P, Danysz W. Inhibition of reinforcing effects of morphine and motivational aspects of naloxone-precipitated opioid withdrawal by N-methyl-D-aspartate receptor antagonist, memantine. J Pharmacol Exp Ther. 1997;280(2):854–65.

    CAS  PubMed  Google Scholar 

  35. Popik P, Wrobel M, Rygula R, Bisaga A, Bespalov AY. Effects of memantine, an NMDA receptor antagonist, on place preference conditioned with drug and nondrug reinforcers in mice. Behav Pharmacol. 2003;14(3):237–44. https://doi.org/10.1097/00008877-200305000-00008.

    Article  CAS  PubMed  Google Scholar 

  36. Popik P, Skolnick P. The NMDA antagonist memantine blocks the expression and maintenance of morphine dependence. Pharmacol Biochem Behav. 1996;53(4):791–7. https://doi.org/10.1016/0091-3057(95)02163-9.

    Article  CAS  PubMed  Google Scholar 

  37. Popik P, Wrobel M, Bisaga A. Reinstatement of morphine-conditioned reward is blocked by memantine. Neuropsychopharmacology. 2006;31(1):160–70. https://doi.org/10.1038/sj.npp.1300760.

    Article  CAS  PubMed  Google Scholar 

  38. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J. NMDA glutamate but not dopamine antagonists blocks drug-induced reinstatement of morphine place preference. Brain Res Bull. 2005;64(6):493–503. https://doi.org/10.1016/j.brainresbull.2004.10.005.

    Article  CAS  PubMed  Google Scholar 

  39. • Krupitsky EM, Masalov DV, Burakov AM, Didenko TY, Romanova TN, Bespalov AY, et al. A pilot study of memantine effects on protracted withdrawal (syndrome of anhedonia) in heroin addicts. Addict Disord Treat. 2002;1(4):143–6. https://doi.org/10.1097/00132576-200211000-00006 This study demonstrated that memantine has potential in treating heroin craving and anhedonia that is associated with protracted withdrawal in persons with opioid use disorder.

    Article  Google Scholar 

  40. Bisaga A, Comer SD, Ward AS, Popik P, Kleber HD, Fischman MW. The NMDA antagonist memantine attenuates the expression of opioid physical dependence in humans. Psychopharmacology. 2001;157(1):1–10. https://doi.org/10.1007/s002130100739.

    Article  CAS  PubMed  Google Scholar 

  41. Comer SD, Sullivan MA. Memantine produces modest reductions in heroin-induced subjective responses in human research volunteers. Psychopharmacology. 2007;193(2):235–45. https://doi.org/10.1007/s00213-007-0775-2.

    Article  CAS  PubMed  Google Scholar 

  42. Bisaga A, Sullivan MA, Cheng WY, Carpenter KM, Mariani JJ, Levin FR, et al. A placebo controlled trial of memantine as an adjunct to oral naltrexone for opioid dependence. Drug Alcohol Depend. 2011;119(1–2):e23–9. https://doi.org/10.1016/j.drugalcdep.2011.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bisaga A, Sullivan MA, Glass A, Mishlen K, Carpenter KM, Mariani JJ, et al. A placebo-controlled trial of memantine as an adjunct to injectable extended-release naltrexone for opioid dependence. J Subst Abus Treat. 2014;46(5):546–52. https://doi.org/10.1016/j.jsat.2014.01.005.

    Article  Google Scholar 

  44. Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, et al. Low-dose memantine attenuated methadone dose in opioid-dependent patients: a 12-week double-blind randomized controlled trial. Sci Rep. 2015;5:10140. https://doi.org/10.1038/srep10140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang YH, Chen SL, Lee SY, Chen PS, Wang TY, Lee IH, et al. Corrigendum: low-dose add-on memantine treatment may improve cognitive performance and self-reported health conditions in opioid-dependent patients undergoing methadone-maintenance-therapy. Sci Rep. 2017;7:46849. https://doi.org/10.1038/srep46849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonzalez G, DiGirolamo G, Romero-Gonzalez M, Smelson D, Ziedonis D, Kolodziej M. Memantine improves buprenorphine/naloxone treatment for opioid dependent young adults. Drug Alcohol Depend. 2015;156:243–53. https://doi.org/10.1016/j.drugalcdep.2015.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology. 1999;38(6):735–67. https://doi.org/10.1016/s0028-3908(99)00019-2.

    Article  CAS  PubMed  Google Scholar 

  48. Elias AM, Pepin MJ, Brown JN. Adjunctive memantine for opioid use disorder treatment: a systematic review. J Subst Abus Treat. 2019;107:38–43. https://doi.org/10.1016/j.jsat.2019.10.003.

    Article  Google Scholar 

  49. Zdanys K, Tampi RR. A systematic review of off-label uses of memantine for psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(6):1362–74. https://doi.org/10.1016/j.pnpbp.2008.01.008.

    Article  CAS  Google Scholar 

  50. Dijkstra BA, Krabbe PF, De Jong CA, van der Staak CP. Prediction of withdrawal symptoms during opioid detoxification. J Opioid Manag. 2008;4(5):311–9. https://doi.org/10.5055/jom.2008.0035.

    Article  PubMed  Google Scholar 

  51. Peachey JE, Lei H. Assessment of opioid dependence with naloxone. Br J Addict. 1988;83(2):193–201. https://doi.org/10.1111/j.1360-0443.1988.tb03981.x.

    Article  CAS  PubMed  Google Scholar 

  52. Stotts AL, Dodrill CL, Kosten TR. Opioid dependence treatment: options in pharmacotherapy. Expert Opin Pharmacother. 2009;10(11):1727–40. https://doi.org/10.1517/14656560903037168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kampman K, Jarvis M. American Society of Addiction Medicine (ASAM) national practice guideline for the use of medications in the treatment of addiction involving opioid use. J Addict Med. 2015;9(5):358–67. https://doi.org/10.1097/ADM.0000000000000166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doughty B, Morgenson D, Brooks T. Lofexidine: a newly FDA-approved, nonopioid treatment for opioid withdrawal. Ann Pharmacother. 2019;53(7):746–53. https://doi.org/10.1177/1060028019828954.

    Article  CAS  PubMed  Google Scholar 

  55. Food and Drug Administration. Labeling - Lucemyra (lofexidine hydrochloride) - application number 209229Orig1s000. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/209229Orig1s000lbl.pdf. Accessed 5 Mar 2020.

  56. Food and Drug Administration. Approval letter - Lucemyra (lofexidine hydrochloride) - application number 209229Orig1s000. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/209229Orig1s000Approv.pdf. Accessed 1 May 2020.

  57. Maldonado R. Participation of noradrenergic pathways in the expression of opiate withdrawal: biochemical and pharmacological evidence. Neurosci Biobehav Rev. 1997;21(1):91–104. https://doi.org/10.1016/0149-7634(95)00061-5.

    Article  CAS  PubMed  Google Scholar 

  58. Gish EC, Miller JL, Honey BL, Johnson PN. Lofexidine, an {alpha}2-receptor agonist for opioid detoxification. Ann Pharmacother. 2010;44(2):343–51. https://doi.org/10.1345/aph.1M347.

    Article  CAS  PubMed  Google Scholar 

  59. Vartak AP. The preclinical discovery of lofexidine for the treatment of opiate addiction. Expert Opin Drug Discov. 2014;9(11):1371–7. https://doi.org/10.1517/17460441.2014.962995.

    Article  CAS  PubMed  Google Scholar 

  60. Gold MS, Redmond DE Jr, Kleber HD. Noradrenergic hyperactivity in opiate withdrawal supported by clonidine reversal of opiate withdrawal. Am J Psychiatry. 1979;136(1):100–2. https://doi.org/10.1176/ajp.136.1.100.

    Article  CAS  PubMed  Google Scholar 

  61. Toce MS, Chai PR, Burns MM, Boyer EW. Pharmacologic treatment of opioid use disorder: a review of pharmacotherapy, adjuncts, and toxicity. J Med Toxicol. 2018;14(4):306–22. https://doi.org/10.1007/s13181-018-0685-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gossop M. Clonidine and the treatment of the opiate withdrawal syndrome. Drug Alcohol Depend. 1988;21(3):253–9. https://doi.org/10.1016/0376-8716(88)90078-6.

    Article  CAS  PubMed  Google Scholar 

  63. Aghajanian GK. Central noradrenergic neurons: a locus for the functional interplay between alpha-2 adrenoceptors and opiate receptors. J Clin Psychiatry. 1982;43(6 Pt 2):20–4.

    CAS  PubMed  Google Scholar 

  64. Aghajanian GK. Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature. 1978;276(5684):186–8. https://doi.org/10.1038/276186a0.

    Article  CAS  PubMed  Google Scholar 

  65. Betzing H, Biedermann J. Chemistry of lofexidine. Arzneimittelforschung. 1982;32(8a):916–8.

    CAS  PubMed  Google Scholar 

  66. Graf E, Doppelfeld IS, Prop G. Animal experiments on the cardiovascular effects of lofexidine. Arzneimittelforschung. 1982;32(8a):941–55.

    CAS  PubMed  Google Scholar 

  67. Wagener HH, Genthe H. Characteristics of lofexidine in pharmacological screening. Arzneimittelforschung. 1982;32(8a):918–23.

    CAS  PubMed  Google Scholar 

  68. Shearman GT, Lal H, Ursillo RC. Effectiveness of lofexidine in blocking morphine-withdrawal signs in the rat. Pharmacol Biochem Behav. 1980;12(4):573–5. https://doi.org/10.1016/0091-3057(80)90191-4.

    Article  CAS  PubMed  Google Scholar 

  69. Lal H, Shearman GT, Ursillo RC. Nonnarcotic antidiarrheal action of clonidine and lofexidine in the rat. J Clin Pharmacol. 1981;21(1):16–9. https://doi.org/10.1002/j.1552-4604.1981.tb01726.x.

    Article  CAS  PubMed  Google Scholar 

  70. Li JLC, Sun X. Lofexidine modulates expression of Fos protein in locus coeruleus of morphine dependent rats. Chin J Drug Depend. 2000;9(3):177–8.

    CAS  Google Scholar 

  71. Georges F, Stinus L, Le Moine C. Mapping of c-fos gene expression in the brain during morphine dependence and precipitated withdrawal, and phenotypic identification of the striatal neurons involved. Eur J Neurosci. 2000;12:4475–86. https://doi.org/10.1046/j.0953-816x.2000.01334.x.

    Article  CAS  PubMed  Google Scholar 

  72. Frenois F, Cador M, Caille S, Stinus L, Le Moine C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci. 2002;16(7):1377–89. https://doi.org/10.1046/j.1460-9568.2002.02187.x.

    Article  PubMed  Google Scholar 

  73. Frenois F, Stinus L, Di Blasi F, Cador M, Le Moine C. A specific limbic circuit underlies opiate withdrawal memories. J Neurosci. 2005;25(6):1366–74. https://doi.org/10.1523/JNEUROSCI.3090-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dollery CT, Reid JL. Double-blind comparison of the hypotensive, sedative and salivary flow effects of lofexidine and clonidine in normal subjects. Arzneimittelforschung. 1982;32(8a):984–7.

    CAS  PubMed  Google Scholar 

  75. Lopez LM, Mehta JL. Comparative efficacy and safety of lofexidine and clonidine in mild to moderately severe systemic hypertension. Am J Cardiol. 1984;53(6):787–90. https://doi.org/10.1016/0002-9149(84)90405-3.

    Article  CAS  PubMed  Google Scholar 

  76. • Washton A, Resnick R, Perzel J, Garwood J, Gold M, Pottash AC, et al. Lofexidine, a clonidine analogue effective in opiate withdrawal. The Lancet. 1981;317(8227):991–3 Seminal publication identifying the equivalence of lofexidine to clonidine in attenuating opioid withdrawal symptoms in opioid-dependent patients.

    Article  Google Scholar 

  77. Gold MS, Pottash AC, Sweeney DR, Extein I, Annitto WJ. Opiate detoxification with lofexidine. Drug Alcohol Depend. 1981;8(4):307–15. https://doi.org/10.1016/0376-8716(81)90040-5.

    Article  CAS  PubMed  Google Scholar 

  78. Washton AM, Resnick RB, Geyer G. Opiate withdrawal using lofexidine, a clonidine analogue with fewer side effects. J Clin Psychiatry. 1983;44(9):335–7.

    CAS  PubMed  Google Scholar 

  79. Lin S-K, Strang J, Su L-W, Tsai C-J, Hu W-H. Double-blind randomised controlled trial of lofexidine versus clonidine in the treatment of heroin withdrawal. Drug Alcohol Depend. 1997;48(2):127–33. https://doi.org/10.1016/s0376-8716(97)00116-6.

    Article  CAS  PubMed  Google Scholar 

  80. Carnwath T, Hardman J. Randomised double-blind comparison of lofexidine and clonidine in the out-patient treatment of opiate withdrawal. Drug Alcohol Depend. 1998;50(3):251–4. https://doi.org/10.1016/s0376-8716(98)00040-4.

    Article  CAS  PubMed  Google Scholar 

  81. Kahn A, Mumford JP, Rogers GA, Beckford H. Double-blind study of lofexidine and clonidine in the detoxification of opiate addicts in hospital. Drug Alcohol Depend. 1997;44(1):57–61. https://doi.org/10.1016/s0376-8716(96)01316-6.

    Article  CAS  PubMed  Google Scholar 

  82. Gerra G, Zaimovic A, Giusti F, Di Gennaro C, Zambelli U, Gardini S, et al. Lofexidine versus clonidine in rapid opiate detoxification. J Subst Abus Treat. 2001;21(1):11–7. https://doi.org/10.1016/s0740-5472(01)00178-7.

    Article  CAS  Google Scholar 

  83. Walsh SL, Strain EC, Bigelow GE. Evaluation of the effects of lofexidine and clonidine on naloxone-precipitated withdrawal in opioid-dependent humans. Addiction. 2003;98(4):427–39. https://doi.org/10.1046/j.1360-0443.2003.00372.x.

    Article  PubMed  Google Scholar 

  84. Kuszmaul AK, Palmer EC, Frederick EK. Lofexidine versus clonidine for mitigation of opioid withdrawal symptoms: a systematic review. J Am Pharm Assoc (2003). 2020;60(1):145–52. doi:https://doi.org/10.1016/j.japh.2019.10.004.

  85. Strang J, Bearn J, Gossop M. Lofexidine for opiate detoxification: review of recent randomised and open controlled trials. Am J Addict. 1999;8(4):337–48. https://doi.org/10.1080/105504999305749.

    Article  CAS  PubMed  Google Scholar 

  86. Guo S, Manning V, Yang Y, Koh PK, Chan E, de Souza NN, et al. Lofexidine versus diazepam for the treatment of opioid withdrawal syndrome: a double-blind randomized clinical trial in Singapore. J Subst Abus Treat. 2018;91:1–11. https://doi.org/10.1016/j.jsat.2018.04.012.

    Article  CAS  Google Scholar 

  87. Bearn J, Gossop M, Strang J. Randomised double-blind comparison of lofexidine and methadone in the in-patient treatment of opiate withdrawal. Drug Alcohol Depend. 1996;43(1–2):87–91. https://doi.org/10.1016/s0376-8716(96)01289-6.

    Article  PubMed  Google Scholar 

  88. Bearn J, Gossop M, Strang J. Accelerated lofexidine treatment regimen compared with conventional lofexidine and methadone treatment for in-patient opiate detoxification. Drug Alcohol Depend. 1998;50(3):227–32. https://doi.org/10.1016/s0376-8716(98)00030-1.

    Article  CAS  PubMed  Google Scholar 

  89. Howells C, Allen S, Gupta J, Stillwell G, Marsden J, Farrell M. Prison based detoxification for opioid dependence: a randomised double blind controlled trial of lofexidine and methadone. Drug Alcohol Depend. 2002;67(2):169–76. https://doi.org/10.1016/s0376-8716(02)00024-8.

    Article  CAS  PubMed  Google Scholar 

  90. Raistrick D, West D, Finnegan O, Thistlethwaite G, Brearley R, Banbery J. A comparison of buprenorphine and lofexidine for community opiate detoxification: results from a randomized controlled trial. Addiction. 2005;100(12):1860–7. https://doi.org/10.1111/j.1360-0443.2005.01273.x.

    Article  PubMed  Google Scholar 

  91. Yu E, Miotto K, Akerele E, Montgomery A, Elkashef A, Walsh R, et al. A phase 3 placebo-controlled, double-blind, multi-site trial of the alpha-2-adrenergic agonist, lofexidine, for opioid withdrawal. Drug Alcohol Depend. 2008;97(1–2):158–68. https://doi.org/10.1016/j.drugalcdep.2008.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gorodetzky CW, Walsh SL, Martin PR, Saxon AJ, Gullo KL, Biswas K. A phase III, randomized, multi-center, double blind, placebo controlled study of safety and efficacy of lofexidine for relief of symptoms in individuals undergoing inpatient opioid withdrawal. Drug Alcohol Depend. 2017;176:79–88. https://doi.org/10.1016/j.drugalcdep.2017.02.020.

    Article  CAS  PubMed  Google Scholar 

  93. Alam D, Tirado C, Pirner M, Clinch T. Efficacy of lofexidine for mitigating opioid withdrawal symptoms: results from two randomized, placebo-controlled trials. J Drug Assess. 2020;9(1):13–9. https://doi.org/10.1080/21556660.2019.1704416.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fishman M, Tirado C, Alam D, Gullo K, Clinch T, Gorodetzky CW, et al. Safety and efficacy of lofexidine for medically managed opioid withdrawal: a randomized controlled clinical trial. J Addict Med. 2019;13(3):169–76. https://doi.org/10.1097/ADM.0000000000000474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. National Institute for Health & Clinical Excellence (NICE). National Clinical Practice Guideline Number 52. Drug misuse: opioid detoxification. 2008. https://www.nice.org.uk/guidance/cg52/evidence/drug-misuse-opioid-detoxification-full-guideline-196515037. Accessed 15 Jun 2020.

  96. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51. https://doi.org/10.1038/nbt.2786.

    Article  CAS  PubMed  Google Scholar 

  97. DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87(3):272–7. https://doi.org/10.1038/clpt.2009.295.

    Article  CAS  PubMed  Google Scholar 

  98. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.

    PubMed  PubMed Central  Google Scholar 

  99. Levin LA, Danesh-Meyer HV. Lost in translation: bumps in the road between bench and bedside. JAMA. 2010;303(15):1533–4. https://doi.org/10.1001/jama.2010.463.

    Article  CAS  PubMed  Google Scholar 

  100. Kushner HI. Toward a cultural biology of addiction. BioSocieties. 2010;5(1):8–24. https://doi.org/10.1057/biosoc.2009.6.

    Article  Google Scholar 

  101. National Institute on Drug Abuse. Understanding drug abuse and addiction. In: NIDA InfoFacts. 2011. https://www.drugabuse.gov/sites/default/files/understanding.pdf. Accessed 1 Oct 2020.

  102. Panlilio LV, Goldberg SR. Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction. 2007;102(12):1863–70. https://doi.org/10.1111/j.1360-0443.2007.02011.x.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Belin-Rauscent A, Fouyssac M, Bonci A, Belin D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol Psychiatry. 2016;79(1):39–46. https://doi.org/10.1016/j.biopsych.2015.01.004.

    Article  PubMed  Google Scholar 

  104. Kleykamp BA, De Santis M, Dworkin RH, Huhn AS, Kampman KM, Montoya ID, et al. Craving and opioid use disorder: a scoping review. Drug Alcohol Depend. 2019;205:107639. https://doi.org/10.1016/j.drugalcdep.2019.107639.

    Article  CAS  PubMed  Google Scholar 

  105. Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res. 2016;224:25–52. https://doi.org/10.1016/bs.pbr.2015.08.004.

    Article  PubMed  Google Scholar 

  106. Bossert JM, Marchant NJ, Calu DJ, Shaham Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology. 2013;229(3):453–76. https://doi.org/10.1007/s00213-013-3120-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. 2011;1(1):9. https://doi.org/10.1186/2045-5380-1-9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Belin D, Belin-Rauscent A, Everitt BJ, Dalley JW. In search of predictive endophenotypes in addiction: insights from preclinical research. Genes Brain Behav. 2016;15(1):74–88. https://doi.org/10.1111/gbb.12265.

    Article  CAS  PubMed  Google Scholar 

  109. Ioannidis JP. Why most clinical research is not useful. PLoS Med. 2016;13(6):e1002049. https://doi.org/10.1371/journal.pmed.1002049.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8):e124. https://doi.org/10.1371/journal.pmed.0020124.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pham CT, Karnon JD, Middleton PF, Bloomfield FH, Groom KM, Crowther CA, et al. Randomised clinical trials in perinatal health care: a cost-effective investment. Med J Aust. 2017;207(7):289–93. https://doi.org/10.5694/mja16.01178.

    Article  PubMed  Google Scholar 

  112. Food and Drug Administration. Opioid use disorder: endpoints for demonstrating effectiveness of drugs for medication-assisted treatment guidance for industry. 2018. https://www.fda.gov/media/114948/download.

  113. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012.

    Article  PubMed  Google Scholar 

  114. Mullin R. Cost to develop new pharmaceutical drug now exceeds $2.5B. 2014. https://www.scientificamerican.com/article/cost-to-develop-new-pharmaceutical-drug-now-exceeds-2-5b/. Accessed 18 Oct 2020.

  115. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. https://doi.org/10.1038/nrd.2018.168.

    Article  CAS  PubMed  Google Scholar 

  116. Volkow ND, Koob GF, McLellan TA. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374(4):363–71. https://doi.org/10.1056/NEJMra1511480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jermaine D. Jones.

Ethics declarations

Conflict of Interest

Dr. Jones is currently the recipient of an investigator-initiated grant from Merck Pharmaceuticals, and has worked as a consultant for Alkermes. Dr. Huhn receives research funding from Ashley Treatment through Johns Hopkins University School of Medicine. Drs. Hudzik and Varshneya have nothing to disclose.

Human and Animal Rights and Informed Consent

This review of the literature did not involve the prospective use of human participants or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 1557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, J.D., Varshneya, N.B., Hudzik, T.J. et al. Improving Translational Research Outcomes for Opioid Use Disorder Treatments. Curr Addict Rep 8, 109–121 (2021). https://doi.org/10.1007/s40429-020-00353-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-020-00353-5

Keywords

Navigation