Skip to main content
Log in

Echinocandin Resistance, Susceptibility Testing and Prophylaxis: Implications for Patient Management

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

This article addresses the emergence of echinocandin resistance among Candida species, mechanisms of resistance, factors that promote resistance and confounding issues surrounding standard susceptibility testing. Fungal infections remain a significant cause of global morbidity and mortality, especially among patients with underlying immunosupression. Antifungal therapy is a critical component of patient management for acute and chronic diseases. Yet, therapeutic choices are limited due to only a few drug classes available to treat systemic disease. Moreover, the problem is exacerbated by the emergence of antifungal resistance, which has resulted in difficult to manage multidrug resistant strains. Echinocandin drugs are now the preferred choice to treat a range of candidiasis. These drugs target and inhibit the fungal-specific enzyme glucan synthase, which is responsible for the biosynthesis of a key cell wall polymer. Therapeutic failures involving acquisition of resistance among susceptible organisms like Candida albicans is largely a rare event. However, in recent years, there is an alarming trend of increased resistance among strains of Candida glabrata, which in many cases are also resistant to azole drugs. Echinocandin resistance is always acquired during therapy and the mechanism of resistance is well established to involve amino acid changes in “hot-spot” regions of the Fks subunits carrying the catalytic portion of glucan synthase. These changes significantly decrease the sensitivity of the enzyme to drug resulting in higher MIC values. A range of drug responses, from complete to partial refractory response, is observed depending on the nature of the amino acid substitution, and clinical responses are recapitulated in pharmacodynamic models of infection. The cellular processes promoting the formation of resistant Fks strains involve complex stress response pathways, which yield a variety of adaptive compensatory genetic responses. Stress-adapted cells become drug tolerant and can form stable drug resistant FKS mutations with continued drug exposure. A major concern for resistance detection is that classical broth microdilution techniques show significant variability among clinical microbiology laboratories for certain echinocandin drugs and Candida species. The consequence is that susceptible strains are misclassified according to established clinical breakpoints, and this has led to confusion in the field. Clinical factors that appear to promote echinocandin resistance include the expanding use of antifungal agents for empiric therapy and prophylaxis. Furthermore, host reservoirs such as biofilms in the gastrointestinal tract or intra-abdominal infections can seed development of resistant organisms during therapy. A fundamental understanding of the primary molecular resistance mechanism, along with cellular and clinical factors that promote resistance emergence, is critical to develop better diagnostic tools and therapeutic strategies to overcome and prevent echinocandin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. doi:10.1126/scitranslmed.3004404.

    PubMed  Google Scholar 

  2. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11(6):272–9.

    PubMed  CAS  Google Scholar 

  3. Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(5):503–35. doi:10.1086/596757.

    PubMed  CAS  Google Scholar 

  4. Cleveland AA, Farley MM, Harrison LH, Stein B, Hollick R, Lockhart SR, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008–2011. Clin Infect Dis. 2012;55(10):1352–61. doi:10.1093/cid/cis697.

    PubMed  CAS  Google Scholar 

  5. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, et al. Discovery of novel antifungal (1,3)-beta-d-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000;44(2):368–77.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Turner MS, Drew RH, Perfect JR. Emerging echinocandins for treatment of invasive fungal infections. Expert Opin Emerg Drugs. 2006;11(2):231–50. doi:10.1517/14728214.11.2.231.

    PubMed  CAS  Google Scholar 

  7. Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol. 2011;6(4):441–57. doi:10.2217/fmb.11.19.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327–60. doi:10.1086/525258.

    PubMed  CAS  Google Scholar 

  9. Barchiesi F, Spreghini E, Tomassetti S, Arzeni D, Giannini D, Scalise G. Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata. Antimicrob Agents Chemother. 2005;49(12):4989–92. doi:10.1128/AAC.49.12.4989-4992.2005.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis. 1999;33(2):75–80.

    PubMed  CAS  Google Scholar 

  11. Bowman JC, Abruzzo GK, Flattery AM, Gill CJ, Hickey EJ, Hsu MJ, et al. Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob Agents Chemother. 2006;50(12):4202–5. doi:10.1128/AAC.00485-06.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother. 2002;46(9):3001–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, et al. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol. 2003;41(12):5729–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Bachmann SP, Patterson TF, Lopez-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol. 2002;40(6):2228–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Niimi K, Maki K, Ikeda F, Holmes AR, Lamping E, Niimi M, et al. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother. 2006;50(4):1148–55. doi:10.1128/AAC.50.4.1148-1155.2006.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, Lopez-Ribot JL. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob Agents Chemother. 2003;47(11):3657–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Ferreira JA, Carr JH, Starling CE, de Resende MA, Donlan RM. Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother. 2009;53(10):4377–84. doi:10.1128/AAC.00316-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46(6):1773–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Simitsopoulou M, Peshkova P, Tasina E, Katragkou A, Kyrpitzi D, Velegraki A, et al. Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob Agents Chemother. 2013;57(6):2562–70. doi:10.1128/AAC.02541-12AAC.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71(1):11–41. doi:10.2165/11585270-000000000-00000.

    PubMed  Google Scholar 

  21. Kofla G, Ruhnke M. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur J Med Res. 2011;16(4):159–66.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Mazur P, Baginsky W. In vitro activity of 1,3-beta-d-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem. 1996;271(24):14604–9.

    PubMed  CAS  Google Scholar 

  23. Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB, Yabe T, et al. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J Bacteriol. 1997;179(13):4096–105.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Thompson JR, Douglas CM, Li W, Jue CK, Pramanik B, Yuan X, et al. A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol. 1999;181(2):444–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother. 2012;56(12):6304–9. doi:10.1128/AAC.00813-12.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-d-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009;53(9):3690–9. doi:10.1128/AAC.00443-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Pfaller MA, Espinel-Ingroff A, Bustamante B, Canton E, Diekema DJ, Fothergill A, et al. Multicenter study of anidulafungin and micafungin MIC distributions and epidemiological cutoff values for eight Candida species and the CLSI M27-A3 broth microdilution method. Antimicrob Agents Chemother. 2014;58(2):916–22. doi:10.1128/AAC.02020-13.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol. 2013;51(8):2571–81. doi:10.1128/JCM.00308-13.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 2010;48(1):52–6. doi:10.1128/JCM.01590-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Tortorano AM, Prigitano A, Lazzarini C, Passera M, Deiana ML, Cavinato S, et al. A 1-year prospective survey of candidemia in Italy and changing epidemiology over one decade. Infection. 2013;41(3):655–62. doi:10.1007/s15010-013-0455-6.

    PubMed  CAS  Google Scholar 

  31. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol. 2008;46(1):150–6. doi:10.1128/JCM.01901-07.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Garcia-Effron G, Canton E, Peman J, Dilger A, Roma E, Perlin DS. Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital. J Antimicrob Chemother. 2012;67(11):2739–48. doi:10.1093/jac/dks271.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Spreghini E, Orlando F, Tavanti A, Senesi S, Giannini D, Manso E, et al. In vitro and in vivo effects of echinocandins against Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. J Antimicrob Chemother. 2012;67(9):2195–202. doi:10.1093/jac/dks180.

    PubMed  CAS  Google Scholar 

  34. Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, Jones RN. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J Clin Microbiol. 2010;48(5):1592–9. doi:10.1128/JCM.02445-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14(3):164–76. doi:10.1016/j.drup.2011.01.004.

    PubMed  CAS  Google Scholar 

  36. Mora-Duarte J, Betts R, Rotstein C, Colombo AL, Thompson-Moya L, Smietana J, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347(25):2020–9. doi:10.1056/NEJMoa021585.

    PubMed  CAS  Google Scholar 

  37. Kale-Pradhan PB, Morgan G, Wilhelm SM, Johnson LB. Comparative efficacy of echinocandins and nonechinocandins for the treatment of Candida parapsilosis infections: a meta-analysis. Pharmacotherapy. 2010;30(12):1207–13. doi:10.1592/phco.30.12.1207.

    PubMed  CAS  Google Scholar 

  38. Colombo AL, Perfect J, DiNubile M, Bartizal K, Motyl M, Hicks P, et al. Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis. 2003;22(8):470–4. doi:10.1007/s10096-003-0973-8.

    PubMed  CAS  Google Scholar 

  39. Fernandez-Ruiz M, Aguado JM, Almirante B, Lora-Pablos D, Padilla B, Puig-Asensio M, et al. Initial use of echinocandins does not negatively influence outcome in Candida parapsilosis bloodstream infection: a propensity score analysis. Clin Infect Dis. 2014;58(10):1413–21. doi:10.1093/cid/ciu158.

    PubMed  CAS  Google Scholar 

  40. Ghannoum MA, Chen A, Buhari M, Chandra J, Mukherjee PK, Baxa D, et al. Differential in vitro activity of anidulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit. Clin Microbiol Infect. 2009;15(3):274–9. doi:10.1111/j.1469-0691.2008.02660.x.

    PubMed  CAS  Google Scholar 

  41. Kabbara N, Lacroix C, Peffault de Latour R, Socie G, Ghannoum M, Ribaud P. Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy. Haematologica. 2008;93(4):639–40. doi:10.3324/haematol.11149.

    PubMed  CAS  Google Scholar 

  42. Forrest GN, Weekes E, Johnson JK. Increasing incidence of Candida parapsilosis candidemia with caspofungin usage. J Infect. 2008;56(2):126–9. doi:10.1016/j.jinf.2007.10.014.

    PubMed  Google Scholar 

  43. Cleary JD, Garcia-Effron G, Chapman SW, Perlin DS. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob Agents Chemother. 2008;52(6):2263–5. doi:10.1128/AAC.01568-07.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Garcia-Effron G, Chua DJ, Tomada JR, DiPersio J, Perlin DS, Ghannoum M, et al. Novel FKS mutations associated with echinocandin resistance in Candida species. Antimicrob Agents Chemother. 2010;54(5):2225–7. doi:10.1128/AAC.00998-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Garcia-Effron G, Park S, Perlin DS. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother. 2009;53(1):112–22. doi:10.1128/AAC.01162-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Kahn JN, Garcia-Effron G, Hsu MJ, Park S, Marr KA, Perlin DS. Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase. Antimicrob Agents Chemother. 2007;51(5):1876–8. doi:10.1128/AAC.00067-07.

    PubMed  PubMed Central  Google Scholar 

  47. Laverdiere M, Lalonde RG, Baril JG, Sheppard DC, Park S, Perlin DS. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J Antimicrob Chemother. 2006;57(4):705–8. doi:10.1093/jac/dkl022.

    PubMed  CAS  Google Scholar 

  48. Miller CD, Lomaestro BW, Park S, Perlin DS. Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy. 2006;26(6):877–80. doi:10.1592/phco.26.6.877.

    PubMed  Google Scholar 

  49. Garcia-Effron G, Kontoyiannis DP, Lewis RE, Perlin DS. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother. 2008;52(11):4181–3. doi:10.1128/AAC.00802-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Wiederhold NP, Grabinski JL, Garcia-Effron G, Perlin DS, Lee SA. Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob Agents Chemother. 2008;52(11):4145–8. doi:10.1128/AAC.00959-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Pfeiffer CD, Garcia-Effron G, Zaas AK, Perfect JR, Perlin DS, Alexander BD. Breakthrough invasive candidiasis in patients on micafungin. J Clin Microbiol. 2010;48(7):2373–80. doi:10.1128/JCM.02390-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Thompson GR 3rd, Wiederhold NP, Vallor AC, Villareal NC, Lewis JS 2nd, Patterson TF. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother. 2008;52(10):3783–5. doi:10.1128/AAC.00473-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Lewis JS 2nd, Wiederhold NP, Wickes BL, Patterson TF, Jorgensen JH. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother. 2013;57(9):4559–61. doi:10.1128/AAC.01144-13.

  54. Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, Baixench MT, et al. Candida spp. with acquired echinocandin resistance, France, 2004–2010(1). Emerg Infect Dis. 2012;18(1):86–90. doi:10.3201/eid1801.110556.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn Microbiol Infect Dis. 2011;69(1):45–50. doi:10.1016/j.diagmicrobio.2010.08.013.

    PubMed  CAS  Google Scholar 

  56. Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in intensive care unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents. 2011;38(1):65–9. doi:10.1016/j.ijantimicag.2011.02.016.

    PubMed  CAS  Google Scholar 

  57. Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol. 2011;49(1):396–9. doi:10.1128/JCM.01398-10.

    PubMed  PubMed Central  Google Scholar 

  58. Castanheira M, Woosley LN, Diekema DJ, Messer SA, Jones RN, Pfaller MA. Low prevalence of fks1 hot spot 1 mutation in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54(6):2655–9. doi:10.1128/AAC.01711-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Alexander BD, Johnson MD, Pfeiffer CD, Jimenez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56(12):1724–32. doi:10.1093/cid/cit136.

    PubMed  PubMed Central  Google Scholar 

  60. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–203. doi:10.1128/JCM.06112-11.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dromer F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55(2):532–8. doi:10.1128/AAC.01128-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Fekkar A, Meyer I, Brossas JY, Dannaoui E, Palous M, Uzunov M, et al. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob Agents Chemother. 2013;57(5):2380–2. doi:10.1128/AAC.02037-12.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata: results from the SENTRY Antimicrobial Surveillance Program (2006–2010) and the Centers for Disease Control and Prevention Population-Based Surveillance (2008–2010). J Clin Microbiol. 2012;50(4):1199–203. doi:10.1128/JCM.06112-11.

  64. Arendrup MC, Perkhofer S, Howard SJ, Garcia-Effron G, Vishukumar A, Perlin D, et al. Establishing in vitro-in vivo correlations for Aspergillus fumigatus: the challenge of azoles versus echinocandins. Antimicrob Agents Chemother. 2008;52(10):3504–11. doi:10.1128/AAC.00190-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell. 2005;4(3):625–32. doi:10.1128/EC.4.3.625-632.2005.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Katiyar S, Pfaller M, Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2006;50(8):2892–4. doi:10.1128/AAC.00349-06.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Lackner M, Tscherner M, Schaller M, Kuchler K, Mair C, Sartori B, et al. Position and numbers of FKS mutations in C. albicans selectively influence in vitro and in vivo susceptibility to echinocandin treatment. Antimicrob Agents Chemother. 2014;58(7):3626–35. doi:10.1128/AAC.00123-14.

  68. Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, Du C, et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012;56(9):4862–9. doi:10.1128/AAC.00027-12.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Johnson ME, Katiyar SK, Edlind TD. A new Fks hotspot for acquired echinocandin resistance in yeast, and its contribution to intrinsic resistance of Scedosporium species. Antimicrob Agents Chemother. 2011;55(8):3774–81. doi:10.1128/AAC.01811-10.

  70. Katiyar SK, Edlind TD. Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2009;53(5):1772–8. doi:10.1128/AAC.00020-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Perlin DS. Echinocandin-resistant Candida: molecular methods and phenotypes. Curr Fungal Infect Rep. 2011;5:113–9.

    Google Scholar 

  72. Arendrup MC, Perlin DS, Jensen RH, Howard SJ, Goodwin J, Hope W. Differential in vivo activity of Anidulafungin, Caspofungin and Micafungin against C. glabrata with and without FKS resistance mutations. Antimicrob Agents Chemother. 2012;56(5):2435–42. doi:10.1128/AAC.06369-11.

  73. Howard SJ, Lestner JM, Sharp A, Gregson L, Goodwin J, Slater J, et al. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J Infect Dis. 2011;203(9):1324–32. doi:10.1093/infdis/jir023.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Slater JL, Howard SJ, Sharp A, Goodwin J, Gregson LM, Alastruey-Izquierdo A, et al. Disseminated candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother. 2011;55(7):3075–83. doi:10.1128/AAC.01686-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Wiederhold NP, Najvar LK, Bocanegra RA, Kirkpatrick WR, Patterson TF. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother. 2011;55(7):3254–60. doi:10.1128/AAC.01750-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Castanheira M, Woosley LN, Messer SA, Diekema DJ, Jones RN, Pfaller MA. Frequency of fks mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates. Antimicrob Agents Chemother. 2014;58(1):577–80. doi:10.1128/AAC.01674-13.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Eng WK, Faucette L, McLaughlin MM, Cafferkey R, Koltin Y, Morris RA, et al. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin a hypersensitivity and calcineurin-dependent growth. Gene. 1994;151(1–2):61–71.

    PubMed  CAS  Google Scholar 

  78. Jensen RH, Johansen HK, Arendrup MC. Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis. Antimicrob Agents Chemother. 2013;57(1):614–7. doi:10.1128/AAC.01193-12.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Pasquale T, Tomada JR, Ghannoun M, Dipersio J, Bonilla H. Emergence of Candida tropicalis resistant to caspofungin. J Antimicrob Chemother. 2008;61(1):219. doi:10.1093/jac/dkm453.

    PubMed  CAS  Google Scholar 

  80. Johnson ME, Katiyar SK, Edlind TD. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species. Antimicrob Agents Chemother. 2011;55(8):3774–81. doi:10.1128/AAC.01811-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, et al. The fitness and virulence cost of fks1 mutations causing echinocandin-resistance in Candida albicans. J Infect Dis. 2011. (in press).

  82. d’Enfert C. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets. 2006;7(4):465–70.

    PubMed  Google Scholar 

  83. Mitchell KF, Taff HT, Cuevas MA, Reinicke EL, Sanchez H, Andes DR. Role of matrix beta-1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob Agents Chemother. 2013;57(4):1918–20. doi:10.1128/AAC.02378-12.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF, Solis N, et al. Regulatory role of glycerol in Candida albicans biofilm formation. MBio. 2013;4(2):e00637–12. doi:10.1128/mBio.00637-12.

    PubMed  PubMed Central  Google Scholar 

  85. Odabasi Z, Paetznick V, Rex JH, Ostrosky-Zeichner L. Effects of serum on in vitro susceptibility testing of echinocandins. Antimicrob Agents Chemother. 2007;51(11):4214–6. doi:10.1128/AAC.01589-06.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Paderu P, Garcia-Effron G, Balashov S, Delmas G, Park S, Perlin DS. Serum differentially alters the antifungal properties of echinocandin drugs. Antimicrob Agents Chemother. 2007;51(6):2253–6. doi:10.1128/AAC.01536-06.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Wiederhold NP, Najvar LK, Bocanegra R, Molina D, Olivo M, Graybill JR. In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera. Antimicrob Agents Chemother. 2007;51(5):1616–20. doi:10.1128/AAC.00105-07.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Foldi R, Szilagyi J, Kardos G, Berenyi R, Kovacs R, Majoros L. Effect of 50 % human serum on the killing activity of micafungin against eight Candida species using time-kill methodology. Diagn Microbiol Infect Dis. 2012;73(4):338–42. doi:10.1016/j.diagmicrobio.2012.05.011.

    PubMed  CAS  Google Scholar 

  89. Kovacs R, Gesztelyi R, Berenyi R, Doman M, Kardos G, Juhasz B, et al. Killing rates exerted by caspofungin in 50 % serum and its correlation with in vivo efficacy in a neutropenic murine model against Candida krusei and Candida inconspicua. J Med Microbiol. 2014;63(Pt 2):186–94. doi:10.1099/jmm.0.066381-0.

    PubMed  CAS  Google Scholar 

  90. Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007;10(3):121–30. doi:10.1016/j.drup.2007.04.002.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal Genet Biol. 2010;47(2):117–26. doi:10.1016/j.fgb.2009.09.003.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, et al. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol. 2007;63(5):1399–413. doi:10.1111/j.1365-2958.2007.05588.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 2008;4(4):e1000040. doi:10.1371/journal.ppat.1000040.

    PubMed  PubMed Central  Google Scholar 

  94. Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 2009;5(7):e1000532. doi:10.1371/journal.ppat.1000532.

    PubMed  PubMed Central  Google Scholar 

  95. Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL, Chen YL, et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 2012;8(5):e1002718. doi:10.1371/journal.ppat.1002718.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196(10):1565–71. doi:10.1086/523110.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, et al. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol. 2008;45(10):1404–14. doi:10.1016/j.fgb.2008.08.003.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother. 2012;56(1):208–17. doi:10.1128/AAC.00683-11.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother. 2006;50(9):3160–1. doi:10.1128/AAC.00563-06.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Clemons KV, Espiritu M, Parmar R, Stevens DA. Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. Antimicrob Agents Chemother. 2006;50(4):1293–7. doi:10.1128/AAC.50.4.1293-1297.2006.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother. 2004;48(9):3407–11. doi:10.1128/AAC.48.9.3407-3411.2004.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Healey KR, Katiyar SK, Raj S, Edlind TD. CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol. 2012;86(2):303–13. doi:10.1111/j.1365-2958.2012.08194.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Healey KR, Katiyar SK, Castanheira M, Pfaller MA, Edlind TD. Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility. Antimicrob Agents Chemother. 2011;55(8):3947–9. doi:10.1128/AAC.00044-11.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Rex JH, Pfaller MA. Has antifungal susceptibility testing come of age? Clin Infect Dis. 2002;35(8):982–9. doi:10.1086/342384.

    PubMed  CAS  Google Scholar 

  105. Arendrup MC, Garcia-Effron G, Lass-Florl C, Lopez AG, Rodriguez-Tudela JL, Cuenca-Estrella M, et al. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother. 2010;54(1):426–39. doi:10.1128/AAC.01256-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Pfaller MA, Castanheira M, Messer SA, Rhomberg PR, Jones RN. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp. Diagn Microbiol Infect Dis. 2014;79(2):198–204. doi:10.1016/j.diagmicrobio.2014.03.004.

    PubMed  CAS  Google Scholar 

  107. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD, Andes D, Brown SD, Chaturvedi V, Ghannoum MA, Knapp CC, Sheeehan DJ, Walsh TJ. Correlation of MIC with outcome for Candida spp. tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol. 2008;46(8):2620–9. doi:10.1128/JCM.00566-08

  108. Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, Lepak A. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother. 2010;54(6):2497–506. doi:10.1128/AAC.01584-09.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Akache B, MacPherson S, Sylvain M-A, Turcotte B. Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. J Biol Chem. 2004;279(27):27855–60. doi:10.1074/jbc.M403487200.

    PubMed  CAS  Google Scholar 

  110. Eschenauer GA, Nguyen MH, Shoham S, Vazquez JA, Morris AJ, Pasculle WA, et al. Real-world experience with echinocandin MICs against Candida species in a multicenter study of hospitals that routinely perform susceptibility testing of bloodstream isolates. Antimicrob Agents Chemother. 2014;58(4):1897–906. doi:10.1128/AAC.02163-13.

    PubMed  CAS  Google Scholar 

  111. Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, et al. Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother. 2013;57(12):5836–42. doi:10.1128/AAC.01519-13.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Ben-Ami R, Hilerowicz Y, Novikov A, Giladi M. The impact of new epidemiological cutoff values on Candida glabrata resistance rates and concordance between testing methods. Diagn Microbiol Infect Dis. 2014;79(2):209–13. doi:10.1016/j.diagmicrobio.2014.02.008.

    PubMed  Google Scholar 

  113. Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006;12(5):418–25. doi:10.1111/j.1469-0691.2006.01377.x.

    PubMed  CAS  Google Scholar 

  114. Arendrup MC, Rodriguez-Tudela JL, Lass-Florl C, Cuenca-Estrella M, Donnelly JP, Hope W, et al. EUCAST technical note on anidulafungin. Clin Microbiol Infect. 2011;17(11):E18–20. doi:10.1111/j.1469-0691.2011.03647.x.

    PubMed  CAS  Google Scholar 

  115. Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat. 2013;16(6):81–95. doi:10.1016/j.drup.2014.01.001.

    PubMed  Google Scholar 

  116. Perlin DS. Antifungal drug resistance: do molecular methods provide a way forward? Curr Opin Infect Dis. 2009;22(6):568–73. doi:10.1097/QCO.0b013e3283321ce5.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Slavin MA, Osborne B, Adams R, Levenstein MJ, Schoch HG, Feldman AR, et al. Efficacy and safety of fluconazole prophylaxis for fungal infections after marrow transplantation—a prospective, randomized, double-blind study. J Infect Dis. 1995;171(6):1545–52.

    PubMed  CAS  Google Scholar 

  118. Marr KA, Seidel K, Slavin MA, Bowden RA, Schoch HG, Flowers ME, et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood. 2000;96(6):2055–61.

    PubMed  CAS  Google Scholar 

  119. Marr KA. Primary antifungal prophylaxis in hematopoietic stem cell transplant recipients: clinical implications of recent studies. Curr Opin Infect Dis. 2008;21(4):409–14. doi:10.1097/QCO.0b013e328307c7d9.

    PubMed  Google Scholar 

  120. de la Torre P, Reboli AC. Micafungin: an evidence-based review of its place in therapy. Core Evid. 2014;9:27–39. doi:10.2147/CE.S36304.

    PubMed  PubMed Central  Google Scholar 

  121. van Burik JA, Ratanatharathorn V, Stepan DE, Miller CB, Lipton JH, Vesole DH, et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2004;39(10):1407–16. doi:10.1086/422312.

    PubMed  Google Scholar 

  122. Chou LS, Lewis RE, Ippoliti C, Champlin RE, Kontoyiannis DP. Caspofungin as primary antifungal prophylaxis in stem cell transplant recipients. Pharmacotherapy. 2007;27(12):1644–50. doi:10.1592/phco.27.12.1644.

    PubMed  CAS  Google Scholar 

  123. Mattiuzzi GN, Alvarado G, Giles FJ, Ostrosky-Zeichner L, Cortes J, O’Brien S, et al. Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies. Antimicrob Agents Chemother. 2006;50(1):143–7. doi:10.1128/AAC.50.1.143-147.2006.

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Doring M, Hartmann U, Erbacher A, Lang P, Handgretinger R, Muller I. Caspofungin as antifungal prophylaxis in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation: a retrospective analysis. BMC Infect Dis. 2012;12:151. doi:10.1186/1471-2334-12-151.

    PubMed  PubMed Central  Google Scholar 

  125. Ziakas PD, Kourbeti IS, Mylonakis E. Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis. Clin Ther. 2014;36(2):292–306 e1. doi:10.1016/j.clinthera.2013.11.010.

    PubMed  CAS  Google Scholar 

  126. Xu SX, Shen JL, Tang XF, Feng B. Newer antifungal agents for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis. Transplant Proc. 2013;45(1):407–14. doi:10.1016/j.transproceed.2012.07.149.

    PubMed  CAS  Google Scholar 

  127. Scott LJ. Micafungin: a review of its use in the prophylaxis and treatment of invasive Candida infections. Drugs. 2012;72(16):2141–65. doi:10.2165/11209970-000000000-00000.

    PubMed  CAS  Google Scholar 

  128. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012;18(Suppl 7):19–37. doi:10.1111/1469-0691.12039.

    PubMed  CAS  Google Scholar 

  129. Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, Arendrup MC, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect. 2012;18(Suppl 7):38–52. doi:10.1111/1469-0691.12040.

    PubMed  CAS  Google Scholar 

  130. Bizerra FC, Jimenez-Ortigosa C, Souza AC, Breda GL, Queiroz-Telles F, Perlin DS, et al. Breakthrough candidemia due to multidrug-resistant Candida glabrata during prophylaxis with a low dose of micafungin. Antimicrob Agents Chemother. 2014;58(4):2438–40. doi:10.1128/AAC.02189-13.

    PubMed  CAS  Google Scholar 

  131. Ruggero MA, Topal JE. Development of echinocandin-resistant Candida albicans candidemia following brief prophylactic exposure to micafungin therapy. Transpl Infect Dis. 2014;16(3):469–72. doi:10.1111/tid.12230.

  132. Gomes MZ, Jiang Y, Mulanovich VE, Lewis RE, Kontoyiannis DP. Effectiveness of primary anti-Aspergillus prophylaxis during remission induction chemotherapy of acute myeloid leukemia. Antimicrob Agents Chemother. 2014;58(5):2775–80. doi:10.1128/AAC.01527-13.

    PubMed  CAS  Google Scholar 

  133. Fekkar A, Dannaoui E, Meyer I, Imbert S, Brossas JY, Uzunov M, et al. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis. 2014;33(9):1489–96. doi:10.1007/s10096-014-2096-9.

  134. Shin JH, Chae MJ, Song JW, Jung SI, Cho D, Kee SJ, et al. Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia. J Clin Microbiol. 2007;45(8):2385–91. doi:10.1128/JCM.00381-07.

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008;4(2):e35. doi:10.1371/journal.ppat.0040035.

    PubMed  PubMed Central  Google Scholar 

  137. Kennedy MJ, Volz PA, Edwards CA, Yancey RJ. Mechanisms of association of Candida albicans with intestinal mucosa. J Med Microbiol. 1987;24(4):333–41.

    PubMed  CAS  Google Scholar 

  138. Magill SS, Swoboda SM, Johnson EA, Merz WG, Pelz RK, Lipsett PA, et al. The association between anatomic site of Candida colonization, invasive candidiasis, and mortality in critically ill surgical patients. Diagn Microbiol Infect Dis. 2006;55(4):293–301. doi:10.1016/j.diagmicrobio.2006.03.013.

    PubMed  Google Scholar 

  139. Magill SS, Swoboda SM, Shields CE, Colantuoni EA, Fothergill AW, Merz WG, et al. The epidemiology of Candida colonization and invasive candidiasis in a surgical intensive care unit where fluconazole prophylaxis is utilized: follow-up to a randomized clinical trial. Ann Surg. 2009;249(4):657–65. doi:10.1097/SLA.0b013e31819ed914.

    PubMed  Google Scholar 

  140. Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72(1):9–16. doi:10.1016/j.jhin.2009.02.009.

    PubMed  CAS  Google Scholar 

  141. Voss A, Hollis RJ, Pfaller MA, Wenzel RP, Doebbeling BN. Investigation of the sequence of colonization and candidemia in non-neutropenic patients. J Clin Microbiol. 1994;32(4):975–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Richet HM, Andremont A, Tancrede C, Pico JL, Jarvis WR. Risk factors for candidemia in patients with acute lymphocytic leukemia. Rev Infect Dis. 1991;13(2):211–5.

    PubMed  CAS  Google Scholar 

  143. Reagan DR, Pfaller MA, Hollis RJ, Wenzel RP. Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J Clin Microbiol. 1990;28(12):2733–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Harriott MM, Noverr MC. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011;19(11):557–63. doi:10.1016/j.tim.2011.07.004.

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340–55. doi:10.3109/10408410903241436.

    PubMed  CAS  Google Scholar 

  146. Cheng S, clancy C, Hartman D, Hao B, Nguyen M. Candida glabrata intra-abdominal candidiasis is characterized by persistence within the peritoneal cavity and abscesses. Infect Immun. 2014.

  147. Andes DR, Reynolds DK, Van Wart SA, Lepak AJ, Kovanda LL, Bhavnani SM. Clinical pharmacodynamic index identification for micafungin in esophageal candidiasis: dosing strategy optimization. Antimicrob Agents Chemother. 2013;57(11):5714–6. doi:10.1128/AAC.01057-13.

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Gumbo T, Drusano GL, Liu W, Kulawy RW, Fregeau C, Hsu V, et al. Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis in mice with persistent neutropenia. Antimicrob Agents Chemother. 2007;51(3):968–74. doi:10.1128/AAC.01337-06.

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003;52(1):11–7. doi:10.1093/jac/dkg269.

    PubMed  CAS  Google Scholar 

  150. Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44(5):681–8. doi:10.1086/511642.

    PubMed  Google Scholar 

Download references

Acknowledgments

D.S.P. was partially supported by NIH Grant AI069397 and Pfizer, and is an inventor in a pending U.S. patent application entitled “Assays for Resistance to Echinocandin-Class Drugs.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Perlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perlin, D.S. Echinocandin Resistance, Susceptibility Testing and Prophylaxis: Implications for Patient Management. Drugs 74, 1573–1585 (2014). https://doi.org/10.1007/s40265-014-0286-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0286-5

Keywords

Navigation