Skip to main content

Echinocandin Resistance

  • Chapter
  • First Online:
Antimicrobial Drug Resistance
  • 3152 Accesses

Abstract

Fungal diseases cause life-threatening illnesses such as meningitis and pneumonias, chronic asthma, other respiratory diseases, and recurrent diseases like oral and vaginal thrush. Invasive fungal infections are a consequence of underlying health problems often associated with immunosuppression [1]. Fungal infections often carry high mortality and successful patient management requires antifungal therapy. Yet, treatment options remain extremely limited due to limited classes of antifungal agents and by the emergence of prominent antifungal drug resistance. Currently registered antifungal drugs represented by polyenes and azoles, flucytosine, and echinocandins target the cell membrane, nucleic acid biosynthesis, and cell wall, respectively [2]. The latter and most recently approved class, the echinocandins, are now recommended as primary therapy for non-neutropenic patients with invasive candidiasis [3]. It is estimated that 60 % of candidemia patients now receive an echinocandin for treatment or prophylaxis [4]. As worldwide use of echinocandins broadens, clinical failures due to resistant organisms are a concern, especially among certain Candida species. The development of echinocandin resistance among most susceptible organisms like Candida albicans is an uncommon event. Yet, there is a disturbing trend of increased resistance among strains of Candida glabrata, which are frequently cross-resistant to azole drugs. Echinocandin resistance is acquired during therapy and its mechanism is firmly established to involve amino acid changes in “hot-spot” regions of the Fks subunits of the target glucan synthase. These changes significantly decrease the sensitivity of the enzyme to drug resulting in higher MIC values and reduced pharmacodynamic responses. Biological factors that promote selection of Fks-resistant strains involve complex cellular stress response pathways. The use of broth microdilution assays to assess susceptibility can be problematic with some drug- and species-related variability among clinical microbiology laboratories. Clinical factors promoting resistance include expanding use of echinocandins for therapy and prophylaxis, and localized reservoirs such as those in the gastrointestinal tract or intra-abdominal infections, which can seed emergence of resistant organisms. A basic understanding of the resistance mechanism, along with cellular and clinical factors promoting resistance, will promote better strategies to overcome and prevent echinocandin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv113.

    Article  CAS  Google Scholar 

  2. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11:272–9.

    Article  CAS  PubMed  Google Scholar 

  3. Pappas PG, Kauffman CA, Andes D, Benjamin Jr DK, Calandra TF, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.

    Article  CAS  PubMed  Google Scholar 

  4. Cleveland AA, Farley MM, Harrison LH, Stein B, Hollick R, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008–2011. Clin Infect Dis. 2012;55:1352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2002;26:239–56.

    Article  CAS  PubMed  Google Scholar 

  6. Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Med Mycol. 2001;39 Suppl 1:1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bernard M, Latge JP. Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol. 2001;39:9–17.

    Article  CAS  PubMed  Google Scholar 

  8. Reese AJ, Doering TL. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol. 2003;50:1401–9.

    Article  CAS  PubMed  Google Scholar 

  9. Fukazawa Y, Kagaya K, Shinoda T. Cell wall polysaccharides of pathogenic yeasts. Curr Top Med Mycol. 1995;6:189–219.

    CAS  PubMed  Google Scholar 

  10. Douglas CM. Fungal beta(1,3)-D-glucan synthesis. Med Mycol. 2001;39:55–66.

    Article  CAS  PubMed  Google Scholar 

  11. Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 1997;41:2471–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB, et al. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J Bacteriol. 1997;179:4096–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thompson JR, Douglas CM, Li W, Jue CK, Pramanik B, et al. A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol. 1999;181:444–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, et al. Glucan synthase complex of Aspergillus fumigatus. J Bacteriol. 2001;183:2273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schimoler-O’Rourke R, Renault S, Mo W, Selitrennikoff CP. Neurospora crassa FKS protein binds to the (1,3)beta-glucan synthase substrate, UDP-glucose. Curr Microbiol. 2003;46:408–12.

    Article  PubMed  CAS  Google Scholar 

  16. Kottom TJ, Limper AH. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta-1,3-glucan deposition. J Biol Chem. 2000;275:40628–34.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Burton RA, Harvey AJ, Hrmova M, Wardak AZ, et al. Biochemical evidence linking a putative callose synthase gene with (1 → 3)-beta-D-glucan biosynthesis in barley. Plant Mol Biol. 2003;53:213–25.

    Article  CAS  PubMed  Google Scholar 

  18. Cui X, Shin H, Song C, Laosinchai W, Amano Y, et al. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta. 2001;213:223–30.

    Article  CAS  PubMed  Google Scholar 

  19. Kondoh O, Tachibana Y, Ohya Y, Arisawa M, Watanabe T. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis. J Bacteriol. 1997;179:7734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka K, Nambu H, Katoh Y, Kai M, Hidaka Y. Molecular cloning of homologs of RAS and RHO1 genes from Cryptococcus neoformans. Yeast. 1999;15:1133–9.

    Article  CAS  PubMed  Google Scholar 

  21. Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, et al. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother. 2012;56:6304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009;53:3690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang MS, Elango N, Mattia E, Au-Young J, Robbins PW, et al. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem. 1984;259:14966–72.

    CAS  PubMed  Google Scholar 

  24. Awald P, Zugel M, Monks C, Frost D, Selitrennikoff CP. Purification of 1,3-b-glucan synthase from Neurospora crassa by product entrapment. Exper Mycol. 1993;17:130–41.

    Article  CAS  Google Scholar 

  25. Garcia-Effron G, Park S, Perlin DS. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother. 2009;53:112–22.

    Article  CAS  PubMed  Google Scholar 

  26. Mizoguchi J, Saito T, Mizuno K, Hayano K. On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot (Tokyo). 1977;30:308–13.

    Article  CAS  Google Scholar 

  27. Baguley BC, Rommele G, Gruner J, Wehrli W. Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem. 1979;97:345–51.

    Article  CAS  PubMed  Google Scholar 

  28. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000;44:368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hammond M. Chemical and structure activity studies on the echinocandin lipopeptides. In: Rippon J, Fromtling R, editors. Cutaneous antifungal agents. New York: Marcel Dekker; 1993. p. 395–420.

    Google Scholar 

  30. Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, et al. In vitro antifungal activities and in vivo efficacies of 1,3-b-D-glucan synthesis inhibitors L-671,329, L-646,991, tetrahydroechinocandin B, and L-687,781, a papulacandin. Antimicrob Agents Chemother. 1992;36:1648–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmatz DM, Powles M, McFadden DC, Pittarelli LA, Liberator PA, et al. Treatment and prevention of Pneumocystis carinii pneumonia and further elucidation of the P. carinii life cycle with 1,3-b-glucan synthesis inhibitor L-671,329. J Protozool. 1991;38:151S–3.

    CAS  PubMed  Google Scholar 

  32. Wiederhold NP, Lewis RE. The echinocandin antifungals: an overview of the pharmacology, spectrum and clinical efficacy. Expert Opin Investig Drugs. 2003;12:1313–33.

    Article  CAS  PubMed  Google Scholar 

  33. Turner MS, Drew RH, Perfect JR. Emerging echinocandins for treatment of invasive fungal infections. Expert Opin Emerg Drugs. 2006;11:231–50.

    Article  CAS  PubMed  Google Scholar 

  34. Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol. 2011;6:441–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:327–60.

    Article  CAS  PubMed  Google Scholar 

  36. Barchiesi F, Spreghini E, Tomassetti S, Arzeni D, Giannini D, et al. Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata. Antimicrob Agents Chemother. 2005;49:4989–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis. 1999;33:75–80.

    Article  CAS  PubMed  Google Scholar 

  38. Bowman JC, Abruzzo GK, Flattery AM, Gill CJ, Hickey EJ, et al. Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob Agents Chemother. 2006;50:4202–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother. 2002;46:3001–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, et al. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol. 2003;41:5729–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bachmann SP, Patterson TF, Lopez-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol. 2002;40:2228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niimi K, Maki K, Ikeda F, Holmes AR, Lamping E, et al. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother. 2006;50:1148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, et al. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob Agents Chemother. 2003;47:3657–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferreira JA, Carr JH, Starling CE, de Resende MA, Donlan RM. Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother. 2009;53:4377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46:1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simitsopoulou M, Peshkova P, Tasina E, Katragkou A, Kyrpitzi D, et al. Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob Agents Chemother. 2013;57:2562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71:11–41.

    Article  PubMed  CAS  Google Scholar 

  48. Kofla G, Ruhnke M. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur J Med Res. 2011;16:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pfaller MA, Espinel-Ingroff A, Bustamante B, Canton E, Diekema DJ, et al. Multicenter study of anidulafungin and micafungin MIC distributions and epidemiological cutoff values for eight Candida species and the CLSI M27-A3 broth microdilution method. Antimicrob Agents Chemother. 2014;58:916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol. 2013;51:2571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Effron G, Canton E, Peman J, Dilger A, Roma E, et al. Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital. J Antimicrob Chemother. 2012;67:2739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spreghini E, Orlando F, Tavanti A, Senesi S, Giannini D, et al. In vitro and in vivo effects of echinocandins against Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. J Antimicrob Chemother. 2012;67:2195–202.

    Article  CAS  PubMed  Google Scholar 

  53. Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, et al. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J Clin Microbiol. 2010;48:1592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mora-Duarte J, Betts R, Rotstein C, Colombo AL, Thompson-Moya L, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kale-Pradhan PB, Morgan G, Wilhelm SM, Johnson LB. Comparative efficacy of echinocandins and nonechinocandins for the treatment of Candida parapsilosis infections: a meta-analysis. Pharmacotherapy. 2010;30:1207–13.

    Article  CAS  PubMed  Google Scholar 

  56. Colombo AL, Perfect J, DiNubile M, Bartizal K, Motyl M, et al. Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis. 2003;22:470–4.

    Article  CAS  PubMed  Google Scholar 

  57. Fernandez-Ruiz M, Aguado JM, Almirante B, Lora-Pablos D, Padilla B, et al. Initial use of echinocandins does not negatively influence outcome in Candida parapsilosis bloodstream infection: a propensity score analysis. Clin Infect Dis. 2014;58:1413–21.

    Article  CAS  PubMed  Google Scholar 

  58. Ghannoum MA, Chen A, Buhari M, Chandra J, Mukherjee PK, et al. Differential in vitro activity of anidulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit. Clin Microbiol Infect. 2009;15:274–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kabbara N, Lacroix C, Peffault de Latour R, Socie G, Ghannoum M, et al. Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy. Haematologica. 2008;93:639–40.

    Article  CAS  PubMed  Google Scholar 

  60. Forrest GN, Weekes E, Johnson JK. Increasing incidence of Candida parapsilosis candidemia with caspofungin usage. J Infect. 2008;56:126–9.

    Article  PubMed  Google Scholar 

  61. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell. 2005;4:625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hohl TM, Feldmesser M, Perlin DS, Pamer EG. Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis. 2008;198:176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pfaller MA, Marco F, Messer SA, Jones RN. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn Microbiol Infect Dis. 1998;30:251–5.

    Article  CAS  PubMed  Google Scholar 

  64. Espinel-Ingroff A. Comparison of In vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol. 1998;36:2950–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakai T, Uno J, Ikeda F, Tawara S, Nishimura K, et al. In vitro antifungal activity of Micafungin (FK463) against dimorphic fungi: comparison of yeast-like and mycelial forms. Antimicrob Agents Chemother. 2003;47:1376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Motyl M, Nielsen Kahn J, Giacobbe R. In vitro susceptibiity of dermatophytes to CANCIDAS (caspofungin acetate); Chicago: ASM; 2003. p. Abstract M-1210.

    Google Scholar 

  67. Abruzzo GK, Flattery AM, Gill CJ, Kong L, Smith JG, et al. Evaluation of the echinocandin antifungal MK-0991 (L-743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother. 1997;41:2333–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bartizal K, Gill CJ, Abruzzo GK, Flattery AM, Kong L, et al. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob Agents Chemother. 1997;41:2326–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother. 2000;44:739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, et al. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 2010;48:52–6.

    Article  CAS  PubMed  Google Scholar 

  71. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, et al. Wild-type minimum effective concentration distributions and epidemiologic cutoff values for caspofungin and Aspergillus spp. as determined by Clinical and Laboratory Standards Institute broth microdilution methods. Diagn Microbiol Infect Dis. 2010;67:56–60.

    Article  CAS  PubMed  Google Scholar 

  72. Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat. 2013;16:81–95.

    Article  PubMed  Google Scholar 

  73. Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14:164–76.

    Article  CAS  PubMed  Google Scholar 

  74. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49:3264–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents. 2011;38:65–9.

    Article  CAS  PubMed  Google Scholar 

  76. Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol. 2011;49:396–9.

    Article  PubMed  Google Scholar 

  77. Castanheira M, Woosley LN, Diekema DJ, Messer SA, Jones RN, et al. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54:2655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Castanheira M, Messer SA, Jones RN, Farrell DJ, Pfaller MA. Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeast and moulds collected from invasive infections. Int J Antimicrob Agents. 2014;44:320–6.

    Article  CAS  PubMed  Google Scholar 

  79. Cleary JD, Garcia-Effron G, Chapman SW, Perlin DS. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob Agents Chemother. 2008;52:2263–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Garcia-Effron G, Chua DJ, Tomada JR, DiPersio J, Perlin DS, et al. Novel FKS mutations associated with echinocandin resistance in Candida species. Antimicrob Agents Chemother. 2010;54:2225–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kahn JN, Garcia-Effron G, Hsu MJ, Park S, Marr KA, et al. Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase. Antimicrob Agents Chemother. 2007;51:1876–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Laverdiere M, Lalonde RG, Baril JG, Sheppard DC, Park S, et al. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J Antimicrob Chemother. 2006;57:705–8.

    Article  CAS  PubMed  Google Scholar 

  83. Miller CD, Lomaestro BW, Park S, Perlin DS. Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy. 2006;26:877–80.

    Article  PubMed  Google Scholar 

  84. Garcia-Effron G, Kontoyiannis DP, Lewis RE, Perlin DS. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother. 2008;52:4181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wiederhold NP, Grabinski JL, Garcia-Effron G, Perlin DS, Lee SA. Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob Agents Chemother. 2008;52:4145–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeiffer CD, Garcia-Effron G, Zaas AK, Perfect JR, Perlin DS, et al. Breakthrough invasive candidiasis in patients on micafungin. J Clin Microbiol. 2010;48:2373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thompson III GR, Wiederhold NP, Vallor AC, Villareal NC, Lewis II JS, et al. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother. 2008;52:3783–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lewis II JS, Wiederhold NP, Wickes BL, Patterson TF, Jorgensen JH. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother. 2013;57(9):4559–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, et al. Candida spp. with acquired echinocandin resistance, France, 2004–2010. Emerg Infect Dis. 2012;18:86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pfaller MA, Jones RN, Castanheira M. Regional data analysis of Candida non-albicans strains collected in United States medical sites over a 6-year period, 2006–2011. Mycoses. 2014;57:602–11.

    Article  CAS  PubMed  Google Scholar 

  91. Alexander BD, Johnson MD, Pfeiffer CD, Jimenez-Ortigosa C, Catania J, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56:1724–32.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, et al. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50:1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, et al. Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother. 2014;58:4690–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55:532–8.

    Article  CAS  PubMed  Google Scholar 

  95. Tortorano AM, Prigitano A, Lazzarini C, Passera M, Deiana ML, et al. A 1-year prospective survey of candidemia in Italy and changing epidemiology over one decade. Infection. 2013;41:655–62.

    Article  CAS  PubMed  Google Scholar 

  96. Fekkar A, Meyer I, Brossas JY, Dannaoui E, Palous M, et al. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob Agents Chemother. 2013;57:2380–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Arendrup MC, Perkhofer S, Howard SJ, Garcia-Effron G, Vishukumar A, et al. Establishing in vitro-in vivo correlations for Aspergillus fumigatus: the challenge of azoles versus echinocandins. Antimicrob Agents Chemother. 2008;52:3504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis. 2014;27:484–92.

    Google Scholar 

  99. Katiyar S, Pfaller M, Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2006;50:2892–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arendrup MC, Perlin DS, Jensen RH, Howard SJ, Goodwin J, et al. Differential in vivo activity of Anidulafungin, Caspofungin and Micafungin against C. glabrata with and without FKS resistance mutations. Antimicrob Agents Chemother. 2012;56(5):2435–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Howard SJ, Lestner JM, Sharp A, Gregson L, Goodwin J, et al. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J Infect Dis. 2011;203:1324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Slater JL, Howard SJ, Sharp A, Goodwin J, Gregson LM, et al. Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother. 2011;55:3075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wiederhold NP, Najvar LK, Bocanegra RA, Kirkpatrick WR, Patterson TF. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother. 2011;55:3254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lackner M, Tscherner M, Schaller M, Kuchler K, Mair C, et al. Position and numbers of FKS mutations in C. albicans selectively influence in vitro and in vivo susceptibility to echinocandin treatment. Antimicrob Agents Chemother. 2014;58(7):3626–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012;56:4862–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beyda ND, John J, Kilic A, Alam MJ, Lasco TM, et al. FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin Infect Dis. 2014;59:819–25.

    Article  CAS  PubMed  Google Scholar 

  107. Jensen RH, Johansen HK, Arendrup MC. Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis. Antimicrob Agents Chemother. 2013;57:614–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pasquale T, Tomada JR, Ghannoun M, Dipersio J, Bonilla H. Emergence of Candida tropicalis resistant to caspofungin. J Antimicrob Chemother. 2008;61:219.

    Article  CAS  PubMed  Google Scholar 

  109. Perlin DS. Echinocandin-resistant Candida: molecular methods and phenotypes. Curr Fungal Infect Rep. 2011;5(3):113–9.

    Article  Google Scholar 

  110. Castanheira M, Woosley LN, Messer SA, Diekema DJ, Jones RN, et al. Frequency of fks mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates. Antimicrob Agents Chemother. 2014;58:577–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Eng WK, Faucette L, McLaughlin MM, Cafferkey R, Koltin Y, et al. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene. 1994;151:61–71.

    Article  CAS  PubMed  Google Scholar 

  112. Johnson ME, Katiyar SK, Edlind TD. A new Fks hotspot for acquired echinocandin resistance in yeast, and its contribution to intrinsic resistance of Scedosporium species. Antimicrob Agents Chemother. 2011;55(8):3774–81.

    Google Scholar 

  113. d’Enfert C. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets. 2006;7:465–70.

    Article  PubMed  Google Scholar 

  114. Mitchell KF, Taff HT, Cuevas MA, Reinicke EL, Sanchez H, et al. Role of matrix beta-1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob Agents Chemother. 2013;57:1918–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF, et al. Regulatory role of glycerol in Candida albicans biofilm formation. MBio. 2013;4:e00637-12.

    PubMed  PubMed Central  Google Scholar 

  116. Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, et al. The fitness and virulence cost of fks1 mutations causing echinocandin-resistance in Candida albicans. J Infect Dis. 2011;204(4):626–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007;10:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal Genet Biol. 2010;47:117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kartsonis N, Killar J, Mixson L, Hoe CM, Sable C, et al. Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother. 2005;49:3616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD, et al. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol. 2008;46:2620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pfaller MA, Diekema DJ, Boyken L, Messer SA, Tendolkar S, et al. Effectiveness of anidulafungin in eradicating Candida species in invasive candidiasis. Antimicrob Agents Chemother. 2005;49:4795–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, et al. The PKC, HOG and Ca2+ signalling pathways coordinately regulate chitin synthesis in Candida albicans. Mol Microbiol. 2007;63:1399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, et al. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 2008;4, e1000040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Cowen LE. Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog. 2009;5, e1000471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog. 2010;6, e1001069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, et al. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 2009;5, e1000532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL, et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 2012;8, e1002718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Firon A, Lesage G, Bussey H. Integrative studies put cell wall synthesis on the yeast functional map. Curr Opin Microbiol. 2004;7:617–23.

    Article  CAS  PubMed  Google Scholar 

  129. Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196:1565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, et al. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol. 2008;45:1404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother. 2012;56:208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother. 2006;50:3160–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Clemons KV, Espiritu M, Parmar R, Stevens DA. Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. Antimicrob Agents Chemother. 2006;50:1293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Healey KR, Katiyar SK, Raj S, Edlind TD. CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol. 2012;86:303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Healey KR, Katiyar SK, Castanheira M, Pfaller MA, Edlind TD. Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility. Antimicrob Agents Chemother. 2011;55:3947–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell. 2007;6:1889–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science. 2006;313:367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shin JH, Chae MJ, Song JW, Jung SI, Cho D, et al. Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia. J Clin Microbiol. 2007;45:2385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol. 2008;46:150–6.

    Article  CAS  PubMed  Google Scholar 

  140. Garcia-Effron G, Katiyar SK, Park S, Edlind TD, Perlin DS. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008;52:2305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Maligie MA, Selitrennikoff CP. Cryptococcus neoformans resistance to echinocandins: (1,3)beta-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother. 2005;49:2851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother. 2002;46:3394–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Staab JF, Kahn JN, Marr KA. Differential Aspergillus lentulus echinocandin susceptibilities are Fksp independent. Antimicrob Agents Chemother. 2010;54:4992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Odabasi Z, Paetznick V, Rex JH, Ostrosky-Zeichner L. Effects of serum on in vitro susceptibility testing of echinocandins. Antimicrob Agents Chemother. 2007;51:4214–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Paderu P, Garcia-Effron G, Balashov S, Delmas G, Park S, et al. Serum differentially alters the antifungal properties of echinocandin drugs. Antimicrob Agents Chemother. 2007;51:2253–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wiederhold NP, Najvar LK, Bocanegra R, Molina D, Olivo M, et al. In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera. Antimicrob Agents Chemother. 2007;51:1616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Foldi R, Szilagyi J, Kardos G, Berenyi R, Kovacs R, et al. Effect of 50% human serum on the killing activity of micafungin against eight Candida species using time-kill methodology. Diagn Microbiol Infect Dis. 2012;73:338–42.

    Article  CAS  PubMed  Google Scholar 

  148. Kovacs R, Gesztelyi R, Berenyi R, Doman M, Kardos G, et al. Killing rates exerted by caspofungin in 50 % serum and its correlation with in vivo efficacy in a neutropenic murine model against Candida krusei and Candida inconspicua. J Med Microbiol. 2014;63:186–94.

    Article  CAS  PubMed  Google Scholar 

  149. Arendrup MC, Rodriguez-Tudela JL, Park S, Garcia-Effron G, Delmas G, et al. Echinocandin susceptibility testing of Candida spp. Using EUCAST EDef 7.1 and CLSI M27-A3 standard procedures: analysis of the influence of bovine serum albumin supplementation, storage time, and drug lots. Antimicrob Agents Chemother. 2011;55:1580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Arendrup MC, Garcia-Effron G, Lass-Florl C, Lopez AG, Rodriguez-Tudela JL, et al. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother. 2010;54:426–39.

    Article  CAS  PubMed  Google Scholar 

  151. Pfaller MA, Castanheira M, Messer SA, Rhomberg PR, Jones RN. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp. Diagn Microbiol Infect Dis. 2014;79:198–204.

    Article  CAS  PubMed  Google Scholar 

  152. Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, et al. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother. 2010;54:2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Eschenauer GA, Nguyen MH, Shoham S, Vazquez JA, Morris AJ, et al. Real-world experience with echinocandin MICs against Candida species in a multicenter study of hospitals that routinely perform susceptibility testing of bloodstream isolates. Antimicrob Agents Chemother. 2014;58:1897–906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, et al. Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother. 2013;57:5836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ben-Ami R, Hilerowicz Y, Novikov A, Giladi M. The impact of new epidemiological cutoff values on Candida glabrata resistance rates and concordance between testing methods. Diagn Microbiol Infect Dis. 2014;79:209–13.

    Article  PubMed  Google Scholar 

  156. Pfaller MA, Messer SA, Diekema DJ, Jones RN, Castanheira M. Use of micafungin as a surrogate marker to predict susceptibility and resistance to caspofungin among 3,764 clinical isolates of Candida by use of CLSI methods and interpretive criteria. J Clin Microbiol. 2014;52:108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pfaller MA, Diekema DJ, Jones RN, Castanheira M. Use of anidulafungin as a surrogate marker to predict susceptibility and resistance to caspofungin among 4,290 clinical isolates of Candida by using CLSI methods and interpretive criteria. J Clin Microbiol. 2014;52:3223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Arendrup MC, Rodriguez-Tudela JL, Lass-Florl C, Cuenca-Estrella M, Donnelly JP, et al. EUCAST technical note on anidulafungin. Clin Microbiol Infect. 2011;17:E18–20.

    Article  CAS  PubMed  Google Scholar 

  159. Espinel-Ingroff A, Pfaller MA, Bustamante B, Canton E, Fothergill A, et al. Multilaboratory study of epidemiological cutoff values for detection of resistance in eight Candida species to fluconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother. 2014;58:2006–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Perlin DS. Antifungal drug resistance: do molecular methods provide a way forward? Curr Opin Infect Dis. 2009;22:568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pfaller MA, Andes D, Arendrup MC, Diekema DJ, Espinel-Ingroff A, et al. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis. 2011;70:330–43.

    Article  CAS  PubMed  Google Scholar 

  162. Perlin DS. Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs. 2014;74:1573–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother. 2004;48:3407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stevens DA, White TC, Perlin DS, Selitrennikoff CP. Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagn Microbiol Infect Dis. 2005;51:173–8.

    Article  CAS  PubMed  Google Scholar 

  165. Rueda C, Cuenca-Estrella M, Zaragoza O. Paradoxical growth of Candida albicans in the presence of caspofungin is associated with multiple cell wall rearrangements and decreased virulence. Antimicrob Agents Chemother. 2014;58:1071–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Bizerra FC, Melo AS, Katchburian E, Freymuller E, Straus AH, et al. Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. Antimicrob Agents Chemother. 2011;55:302–10.

    Article  CAS  PubMed  Google Scholar 

  167. Shields RK, Nguyen MH, Du C, Press E, Cheng S, et al. Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrob Agents Chemother. 2011;55:2641–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wiederhold NP, Kontoyiannis DP, Chi J, Prince RA, Tam VH, et al. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. J Infect Dis. 2004;190:1464–71.

    Article  CAS  PubMed  Google Scholar 

  169. Klont RR, Mennink-Kersten MA, Ruegebrink D, Rijs AJ, Blijlevens NM, et al. Paradoxical increase in circulating Aspergillus antigen during treatment with caspofungin in a patient with pulmonary aspergillosis. Clin Infect Dis. 2006;43:e23–5.

    Article  PubMed  Google Scholar 

  170. Zanette RA, Kontoyiannis DP. Paradoxical effect to caspofungin in Candida species does not confer survival advantage in a Drosophila model of candidiasis. Virulence. 2013;4:497–8.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008;4, e35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kennedy MJ, Volz PA, Edwards CA, Yancey RJ. Mechanisms of association of Candida albicans with intestinal mucosa. J Med Microbiol. 1987;24:333–41.

    Article  CAS  PubMed  Google Scholar 

  174. Magill SS, Swoboda SM, Johnson EA, Merz WG, Pelz RK, et al. The association between anatomic site of Candida colonization, invasive candidiasis, and mortality in critically ill surgical patients. Diagn Microbiol Infect Dis. 2006;55:293–301.

    Article  PubMed  Google Scholar 

  175. Magill SS, Swoboda SM, Shields CE, Colantuoni EA, Fothergill AW, et al. The epidemiology of Candida colonization and invasive candidiasis in a surgical intensive care unit where fluconazole prophylaxis is utilized: follow-up to a randomized clinical trial. Ann Surg. 2009;249:657–65.

    Article  PubMed  Google Scholar 

  176. Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16.

    Article  CAS  PubMed  Google Scholar 

  177. Voss A, Hollis RJ, Pfaller MA, Wenzel RP, Doebbeling BN. Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J Clin Microbiol. 1994;32:975–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Richet HM, Andremont A, Tancrede C, Pico JL, Jarvis WR. Risk factors for candidemia in patients with acute lymphocytic leukemia. Rev Infect Dis. 1991;13:211–5.

    Article  CAS  PubMed  Google Scholar 

  179. Harriott MM, Noverr MC. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011;19:557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cheng S, Clancy C, Hartman D, Hao B, Nguyen M. Candida glabrata intra-abdominal candidiasis is characterized by persistence within the peritoneal cavity and abscesses. Infect Immun. 2014;82(7):3015–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Fekkar A, Dannaoui E, Meyer I, Imbert S, Brossas JY, et al. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis. 2014;33(9):1489–96.

    Article  CAS  PubMed  Google Scholar 

  182. Blanchard E, Lortholary O, Boukris-Sitbon K, Desnos-Ollivier M, Dromer F, et al. Prior caspofungin exposure in patients with hematological malignancies is a risk factor for subsequent fungemia due to decreased susceptibility in Candida spp.: a case-control study in Paris, France. Antimicrob Agents Chemother. 2011;55:5358–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. de la Torre P, Reboli AC. Micafungin: an evidence-based review of its place in therapy. Core Evid. 2014;9:27–39.

    PubMed  PubMed Central  Google Scholar 

  184. van Burik JA, Ratanatharathorn V, Stepan DE, Miller CB, Lipton JH, et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2004;39:1407–16.

    Article  PubMed  Google Scholar 

  185. Chou LS, Lewis RE, Ippoliti C, Champlin RE, Kontoyiannis DP. Caspofungin as primary antifungal prophylaxis in stem cell transplant recipients. Pharmacotherapy. 2007;27:1644–50.

    Article  CAS  PubMed  Google Scholar 

  186. Mattiuzzi GN, Alvarado G, Giles FJ, Ostrosky-Zeichner L, Cortes J, et al. Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies. Antimicrob Agents Chemother. 2006;50:143–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Doring M, Hartmann U, Erbacher A, Lang P, Handgretinger R, et al. Caspofungin as antifungal prophylaxis in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation: a retrospective analysis. BMC Infect Dis. 2012;12:151.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Xu SX, Shen JL, Tang XF, Feng B. Newer antifungal agents for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis. Transplant Proc. 2013;45:407–14.

    Article  CAS  PubMed  Google Scholar 

  189. Ziakas PD, Kourbeti IS, Mylonakis E. Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis. Clin Ther. 2014;36(2):292–306.e1.

    Article  CAS  PubMed  Google Scholar 

  190. Scott LJ. Micafungin: a review of its use in the prophylaxis and treatment of invasive Candida infections. Drugs. 2012;72:2141–65.

    Article  CAS  PubMed  Google Scholar 

  191. Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect. 2012;18 Suppl 7:38–52.

    Article  CAS  PubMed  Google Scholar 

  192. Ostrosky-Zeichner L. Candida glabrata and FKS mutations: witnessing the emergence of the true multidrug-resistant Candida. Clin Infect Dis. 2013;56:1733–4.

    Article  PubMed  Google Scholar 

  193. Zimbeck AJ, Iqbal N, Ahlquist AM, Farley MM, Harrison LH, et al. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother. 2010;54:5042–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn Microbiol Infect Dis. 2011;69:45–50.

    Article  CAS  PubMed  Google Scholar 

  195. Chapeland-Leclerc F, Hennequin C, Papon N, Noel T, Girard A, et al. Acquisition of flucytosine, azole, and caspofungin resistance in Candida glabrata bloodstream isolates serially obtained from a hematopoietic stem cell transplant recipient. Antimicrob Agents Chemother. 2010;54:1360–2.

    Article  CAS  PubMed  Google Scholar 

  196. Bizerra FC, Jimenez-Ortigosa C, Souza AC, Breda GL, Queiroz-Telles F, et al. Breakthrough candidemia due to multidrug-resistant Candida glabrata during prophylaxis with a low dose of micafungin. Antimicrob Agents Chemother. 2014;58:2438–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Ruggero MA, Topal JE. Development of echinocandin-resistant Candida albicans candidemia following brief prophylactic exposure to micafungin therapy. Transpl Infect Dis. 2014;16(3):469–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

David S. Perlin is supported by grants from National Institutes of Health (AI069397 and AI109025) and Astellas Pharma.

Disclosures 

Dr. Perlin serves on scientific advisory boards for Merck, Astellas, Amplyx, Cidara,and Synexis and he receives grant support from Astellas, Cidara and Amplyx. He is an inventor in US patent 8,753,819 entitled “Assays for Resistance to Echinocandin-Class Drugs.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Perlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Perlin, D.S. (2017). Echinocandin Resistance. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_29

Download citation

Publish with us

Policies and ethics