Skip to main content
Log in

Epidemiology of Echinocandin Resistance in Candida

  • Epidemiological Aspects of Fungal Infection (T Chiller and JA Baddley, Section Editors)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Echinocandins are the newest antifungal agents approved for use in treating Candida infections in the USA. They act by interfering with 1,3-β-d-glucan synthase and therefore disrupt cell wall production and lead to Candida cell death. There is no intrinsic resistance to echinocandins among Candida species, and isolates from historic collections archived before the release of the echinocandins show no resistance. Resistance to the echinocandins remains low among most Candida species and ranges overall from 0 to 1 %. Among isolates of Candida glabrata, the proportion of resistant isolates is higher and has been reported to be as high as 13.5 % in at least one hospital. Antifungal resistance is due to specific amino acid mutations in the Fksp subunit(s) of the 1,3-β-d-glucan synthase which are localized to one of two hot spots. These mutations are being recognized in isolates from patients who have failed echinocandin therapy and often lead to a poor outcome. While the future looks bright for the echinocandins against most Candida species, C. glabrata remains a species of concern and resistance rates of C. glabrata to the echinocandins should be monitored closely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassone A, Mason RE, Kerridge D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia. 1981;19:97–110.

    Article  CAS  PubMed  Google Scholar 

  2. Perlin DS. Current perspectives on echinocandin class drugs. Fut Microbiol. 2011;6:441–57.

    Article  CAS  Google Scholar 

  3. Sawistowska-Schroder ET, Kerridge D, Perry H. Echinocandin inhibition of 1,3-beta-D-glucan synthase from Candida albicans. FEBS Lett. 1984;173:134–8.

    Article  CAS  PubMed  Google Scholar 

  4. Feldmesser M, Kress Y, Mednick A, Casadevall A. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis. 2000;182:1791–5.

    Article  CAS  PubMed  Google Scholar 

  5. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49:3264–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother. 2012;56:6304–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species: mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother. 2012;46:1086–96.

    Article  PubMed  Google Scholar 

  8. Emri T, Majoros L, Toth V, Pocsi I. Echinocandins: production and applications. Appl Microbiol Biotechnol. 2013;97:3267–84.

    Article  CAS  PubMed  Google Scholar 

  9. Shields RK, Nguyen MH, Press EG, Updike CL, Clancy CJ. Caspofungin MICs correlate with treatment outcomes among patients with Candida glabrata invasive candidiasis and prior echinocandin exposure. Antimicrob Agents Chemother. 2013;57:3528–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shields RK, Nguyen MH, Press EG, Updike CL, Clancy CJ. Anidulafungin and micafungin MIC breakpoints are superior to that of caspofungin for identifying FKS mutant Candida glabrata strains and echinocandin resistance. Antimicrob Agents Chemother. 2013;57:6361–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Arendrup MC, Perlin DS, Jensen RH, Howard SJ, Goodwin J, Hope W. Differential in vivo activities of anidulafungin, caspofungin, and micafungin against Candida glabrata isolates with and without FKS resistance mutations. Antimicrob Agents Chemother. 2012;56:2435–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. The role of FKS mutations in C. glabrata: MIC values, echinocandin resistance and multidrug resistance. Antimicrob Agents Chemother. 2014. doi:10.1128/aac.03255-14.

    Google Scholar 

  13. Lackner M, Tscherner M, Schaller M, Kuchler K, Mair C, Sartori B, et al. Positions and numbers of FKS mutations in Candida albicans selectively influence in vitro and in vivo susceptibilities to echinocandin treatment. Antimicrob Agents Chemother. 2014;58:3626–35.

    Article  CAS  PubMed  Google Scholar 

  14. Walker LA, Gow NA, Munro CA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother. 2013;57:146–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cota JM, Grabinski JL, Talbert RL, Burgess DS, Rogers PD, Edlind TD, et al. Increases in SLT2 expression and chitin content are associated with incomplete killing of Candida glabrata by caspofungin. Antimicrob Agents Chemother. 2008;52:1144–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother. 2012;56:208–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Imtiaz T, Lee KK, Munro CA, Maccallum DM, Shankland GS, Johnson EM, et al. Echinocandin resistance due to simultaneous FKS mutation and increased cell wall chitin in a Candida albicans bloodstream isolate following brief exposure to caspofungin. J Med Microbiol. 2012;61:1330–4.

    Article  CAS  PubMed  Google Scholar 

  18. Healey KR, Katiyar SK, Castanheira M, Pfaller MA, Edlind TD. Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility. Antimicrob Agents Chemother. 2011;55:3947–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Healey KR, Katiyar SK, Raj S, Edlind TD. CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol. 2012;86:303–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Garcia-Effron G, Katiyar SK, Park S, Edlind TD, Perlin DS. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008;52:2305–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Barchiesi F, Spreghini E, Tomassetti S, Della Vittoria A, Arzeni D, Manso E, et al. Effects of caspofungin against Candida guilliermondii and Candida parapsilosis. Antimicrob Agents Chemother. 2006;50:2719–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 2010;48:52–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zimbeck AJ, Iqbal N, Ahlquist AM, Farley MM, Harrison LH, Chiller T, et al. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother. 2010;54:5042–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50:1199–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Alexander BD, Johnson MD, Pfeiffer CD, Jimenez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56:1724–32.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol. 2013;51:2571–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Muller H, Thierry A, Coppee JY, Gouyette C, Hennequin C, Sismeiro O, et al. Genomic polymorphism in the population of Candida glabrata: gene copy-number variation and chromosomal translocations. Fungal Genet Biol. 2009;46:264–76.

    Article  CAS  PubMed  Google Scholar 

  28. Clinical and Laboratory Standards Institute. M27-S4 reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement. Wayne: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  29. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-3rd edition. CLSI document M27-A3. Wayne: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  30. Arendrup M, Cuenca-Estrella M, Lass-Florl C, Hope WW. EUCAST technical note on Candida and micafungin, anidulafungin and fluconazole. Mycoses. 2014;57:377–9.

    PubMed  Google Scholar 

  31. Pfaller MA, Castanheira M, Messer SA, Rhomberg PR, Jones RN. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp. Diagn Microbiol Infect Dis. 2014;79:198–204.

    Article  CAS  PubMed  Google Scholar 

  32. Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, et al. Interlaboratory variability of caspofungin MICs for Candida spp. using CLSI and EUCAST methods: Should the clinical laboratory be testing this agent? Antimicrob Agents Chemother. 2013;57:5836–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, Du C, et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012;56:4862–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Beyda ND, John J, Kilic A, Alam MJ, Lasco TM, Garey KW. FKS mutant Candida glabrata; risk factors and outcomes in patients with candidemia. Clin Infect Dis. 2014. doi:10.1093/cid/ciu407.

    PubMed  Google Scholar 

  35. Lockhart SR, Iqbal N, Cleveland AA, Farley MM, Harrison LH, Bolden CB, et al. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol. 2012;50:3435–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Blanchard E, Lortholary O, Boukris-Sitbon K, Desnos-Ollivier M, Dromer F, Guillemot D. Prior caspofungin exposure in patients with hematological malignancies is a risk factor for subsequent fungemia due to decreased susceptibility in Candida spp.: a case–control study in Paris, France. Antimicrob Agents Chemother. 2011;55:5358–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dromer F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55:532–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Arendrup MC, Dzajic E, Jensen RH, Johansen HK, Kjaeldgaard P, Knudsen JD, et al. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: data from a nationwide fungaemia surveillance programme. Clin Microbiol Infect. 2013;19:E343–53.

    Article  CAS  PubMed  Google Scholar 

  39. Lewis 2nd JS, Wiederhold NP, Wickes BL, Patterson TF, Jorgensen JH. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother. 2013;57:4559–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, Baixench MT, et al. Candida spp. with acquired echinocandin resistance, France, 2004–2010. Emerg Infect Dis. 2012;18:86–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Marcos-Zambrano LJ, Escribano P, Sanchez C, Munoz P, Bouza E, Guinea J. Antifungal resistance to fluconazole and echinocandins is not emerging in yeast isolates causing fungemia in a Spanish tertiary care center. Antimicrob Agents Chemother. 2014. doi:10.1128/aac.02670-14.

    Google Scholar 

  42. Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis. 2012;73:45–8.

    Article  PubMed  Google Scholar 

  43. Arendrup MC, Bruun B, Christensen JJ, Fuursted K, Johansen HK, Kjaeldgaard P, et al. National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol. 2011;49:325–34.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Barton R, Bijie H, et al. Geographic variation in the frequency of isolation and fluconazole and voriconazole susceptibilities of Candida glabrata: an assessment from the ARTEMIS DISK Global Antifungal Surveillance Program. Diagn Microbiol Infect Dis. 2010;67:162–71.

    Article  CAS  PubMed  Google Scholar 

  45. Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY antimicrobial surveillance program, 2008–2009. Antimicrob Agents Chemother. 2011;55:561–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Variation in Candida spp. Distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). Diagn Microbiol Infect Dis. 2010;68:278–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The findings and conclusions of this article are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Compliance with Ethics Guidelines

Conflict of Interest

NT Grossman, TM Chiller, and SR Lockhart all declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn R. Lockhart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grossman, N.T., Chiller, T.M. & Lockhart, S.R. Epidemiology of Echinocandin Resistance in Candida . Curr Fungal Infect Rep 8, 243–248 (2014). https://doi.org/10.1007/s12281-014-0209-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0209-7

Keywords

Navigation