Skip to main content
Log in

Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Membrane transporters play an essential role in the pharmacokinetics of drugs as they mediate exchanges between biological compartments. Tacrolimus is characterized by wide interpatient variability in terms of its pharmacokinetics that may in part be due to genetic factors. The pharmacogenetics of drug transporters is therefore a promising area to explore in the clinical pharmacology of tacrolimus. The aim of this review is to provide an overview of currently available data regarding the pharmacogenetics of membrane transporters that may be involved in the interindividual variability of the response to tacrolimus. Several genetic variants in genes coding for influx or efflux membrane transporters (e.g. ABCB1, ABCC2, ABCC8, SLC30A8, SLCO1B1/3, SLC28A1, SLC22A11, and SLC28A3) have been associated with tacrolimus pharmacokinetics variability or the occurrence of toxicity; however, there is still a degree of controversy as to the impact of these variants in vivo and further investigations are needed to confirm these results in larger cohorts and to validate the relevance of such genetic biomarkers for personalization of immunosuppressive therapy in solid organ transplantations. The relationship between transporter polymorphisms and the intracellular concentration of tacrolimus should also be further investigated. Finally, the main challenge could be elucidation of the interplay of biological mechanisms underlying genetic variations that alter the drug concentration or its clinical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43:623–53.

    Article  CAS  PubMed  Google Scholar 

  2. Wallemacq P, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit. 2009;31:139–52.

    Article  CAS  PubMed  Google Scholar 

  3. French Biomedicine Agency Agence de la biomédecine—Le rapport annuel médical et scientifique; 2016. http://www.agence-biomedecine.fr/annexes/bilan2016/donnees/sommaire-organes. Accessed 20 Aug 2018.

  4. Woillard J-B, Chouchana L, Picard N, Loriot M-A, French Network of Pharmacogenetics (RNPGX). Pharmacogenetics of immunosuppressants: state of the art and clinical implementation—recommendations from the French National Network of Pharmacogenetics (RNPGx). Therapie. 2017;72:285–99.

    Article  PubMed  Google Scholar 

  5. Whirl-Carrillo M, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–7.

    Article  CAS  PubMed  Google Scholar 

  6. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther. Drug Monit. 1995;17:584–91.

    Article  CAS  PubMed  Google Scholar 

  7. Naesens M, Kuypers DRJ, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481–508.

    Article  CAS  PubMed  Google Scholar 

  8. Bechstein WO. Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl Int. 2000;13:313–26.

    Article  CAS  PubMed  Google Scholar 

  9. Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transpl. 2002;2:807–18.

    Article  CAS  Google Scholar 

  10. Dai Y, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos Biol Fate Chem. 2006;34:836–47.

    Article  CAS  PubMed  Google Scholar 

  11. Firdaous I, Vėrbeeck RK, Hassoun A, Langrehr JM, Wallemacq PE. Excretion of tacrolimus glucuronides in human bile. Eur J Drug Metab Pharmacokinet. 1997;22:217–21.

    Article  CAS  PubMed  Google Scholar 

  12. Tron C, et al. Tacrolimus: does direct glucuronidation matter? An analytical and pharmacological perspective. Pharmacol Res. 2017;124:164–6.

    Article  CAS  PubMed  Google Scholar 

  13. Tron C, et al. A high performance liquid chromatography tandem mass spectrometry for the quantification of tacrolimus in human bile in liver transplant recipients. J Chromatogr A. 2016;1475:55–63.

    Article  CAS  PubMed  Google Scholar 

  14. Laverdiere I, Caron P, Harvey M, Levesque E, Guillemette C. In vitro investigation of human UDP-glucuronosyltransferase isoforms responsible for tacrolimus glucuronidation: predominant contribution of UGT1A4. Drug Metab Dispos. 2011;39:1127–30.

    Article  CAS  PubMed  Google Scholar 

  15. Strassburg CP, et al. Identification of cyclosporine A and tacrolimus glucuronidation in human liver and the gastrointestinal tract by a differentially expressed UDP-glucuronosyltransferase: UGT2B7. J Hepatol. 2001;34:865–72.

    Article  CAS  PubMed  Google Scholar 

  16. Picard N, et al. Pharmacogenetic biomarkers predictive of the pharmacokinetics and pharmacodynamics of immunosuppressive drugs. Ther Drug Monit. 2016;38:S57–69.

    Article  PubMed  Google Scholar 

  17. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet. 2010;49:207–21.

    Article  CAS  PubMed  Google Scholar 

  18. Thervet E, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010;87(6):721–6.

    CAS  PubMed  Google Scholar 

  19. van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol. 2014;10:725–31.

    Article  CAS  PubMed  Google Scholar 

  20. Hesselink DA, van Gelder T, van Schaik RH. The pharmacogenetics of calcineurin inhibitors: one step closer toward individualized immunosuppression? Pharmacogenomics. 2005;6:323–37.

    Article  CAS  PubMed  Google Scholar 

  21. Quteineh L, Verstuyft C. Pharmacogenetics in immunosuppressants: impact on dose requirement of calcineurin inhibitors in renal and liver pediatric transplant recipients. Curr Opin Organ Transpl. 2010;15:601–7.

    Article  Google Scholar 

  22. Elens L, et al. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines. Ther Drug Monit. 2013;35:608–16.

    CAS  PubMed  Google Scholar 

  23. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14:543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlessinger A, Yee SW, Sali A, Giacomini KM. SLC classification: an update. Clin Pharmacol Ther. 2013;94:19–23.

    Article  CAS  PubMed  Google Scholar 

  25. Theodoulou FL, Kerr ID. ABC transporter research: going strong 40 years on. Biochem Soc Trans. 2015;43:1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giacomini KM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  27. Giacomini KM, Huang S-M. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013;94:3–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sissung TM, Goey AKL, Ley AM, Strope JD, Figg WD. Pharmacogenetics of membrane transporters: a review of current approaches. Methods Mol Biol Clifton NJ. 2014;1175:91–120.

    Article  CAS  Google Scholar 

  29. Yee SW, Chen L, Giacomini KM. Pharmacogenomics of membrane transporters: past, present and future. Pharmacogenomics. 2010;11:475–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yee SW, et al. Influence of transporter polymorphisms on drug disposition and response: a perspective from the international transporter consortium. Clin Pharmacol Ther. 2018;1:1. https://doi.org/10.1002/cpt.1098.

    Article  Google Scholar 

  31. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther. 2006;112:457–73.

    Article  CAS  PubMed  Google Scholar 

  32. Hillgren KM, et al. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther. 2013;94:52–63.

    Article  CAS  PubMed  Google Scholar 

  33. Elliott JI, Raguz S, Higgins CF. Multidrug transporter activity in lymphocytes. Br J Pharmacol. 2004;143:899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giraud C, Manceau S, Treluyer J-M. ABC transporters in human lymphocytes: expression, activity and role, modulating factors and consequences for antiretroviral therapies. Expert Opin Drug Metab Toxicol. 2010;6:571–89.

    Article  CAS  PubMed  Google Scholar 

  35. Capron A, Haufroid V, Wallemacq P. Intra-cellular immunosuppressive drugs monitoring: a step forward towards better therapeutic efficacy after organ transplantation? Pharmacol Res. 2016;111:610–8.

    Article  CAS  PubMed  Google Scholar 

  36. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268:6077–80.

    CAS  PubMed  Google Scholar 

  37. Köck K, et al. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells. Clin Pharmacokinet. 2007;46:449–70.

    Article  PubMed  Google Scholar 

  38. Haufroid V. Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr Drug Targets. 2011;12:631–46.

    Article  CAS  PubMed  Google Scholar 

  39. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet. 2010;49:141–75.

    Article  CAS  PubMed  Google Scholar 

  40. Riegersperger M, et al. The effect of ABCB1 polymorphisms on serial tacrolimus concentrations in stable Austrian long-term kidney transplant recipients. Clin Lab. 2016;62:1965–72.

    Article  CAS  PubMed  Google Scholar 

  41. Mlinšek G, Dolžan V, Goričar K, Buturović-Ponikvar J, Arnol M. The role of single nucleotide polymorphisms of CYP3A and ABCB1 on tacrolimus predose concentration in kidney transplant recipients. Clin Nephrol. 2017;88:115–8.

    Article  PubMed  Google Scholar 

  42. Capron A, et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics. 2010;11:703–14.

    Article  CAS  PubMed  Google Scholar 

  43. Dessilly G, et al. ABCB1 1199G>A genetic polymorphism (Rs2229109) influences the intracellular accumulation of tacrolimus in HEK293 and K562 recombinant cell lines. PLoS One. 2014;9:e91555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elens L, et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genom. 2007;17:873–83.

    Article  CAS  Google Scholar 

  45. Capron A, et al. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study: PBMCs tacrolimus levels and graft rejection. Transpl Int. 2012;25:41–7.

    Article  CAS  PubMed  Google Scholar 

  46. Capron A, et al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in liver biopsies after hepatic transplantation: correlation with histopathologic staging of rejection. Ther Drug Monit. 2007;29:340–8.

    Article  CAS  PubMed  Google Scholar 

  47. Vafadari R, et al. Genetic polymorphisms in ABCB1 influence the pharmacodynamics of tacrolimus. Ther Drug Monit. 2013;35:459–65.

    Article  CAS  PubMed  Google Scholar 

  48. Han SS, et al. Monitoring the intracellular tacrolimus concentration in kidney transplant recipients with stable graft function. PLoS One. 2016;11:e0153491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Debette-Gratien M, et al. Influence of donor and recipient CYP3A4, CYP3A5, and ABCB1 genotypes on clinical outcomes and nephrotoxicity in liver transplant recipients. Transplantation. 2016;100:2129–37.

    Article  CAS  PubMed  Google Scholar 

  50. Moes DJAR, et al. Exploring genetic and non-genetic risk factors for delayed graft function, acute and subclinical rejection in renal transplant recipients. Br J Clin Pharmacol. 2016;82:227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hesselink DA, Bouamar R, Elens L, van Schaik RHN, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53:123–39.

    Article  CAS  PubMed  Google Scholar 

  52. Shuker N, et al. ATP-binding cassette transporters as pharmacogenetic biomarkers for kidney transplantation. Clin Chim Acta. 2012;413:1326–37.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng HX, et al. The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transpl Immunol. 2005;14:37–42.

    Article  CAS  PubMed  Google Scholar 

  54. Hawwa AF, et al. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br J Clin Pharmacol. 2009;68:413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tavira B, et al. The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients. J Hum Genet. 2015;60:273–6.

    Article  CAS  PubMed  Google Scholar 

  56. Naesens M, et al. Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J Am Soc Nephrol. 2009;20:2468–80.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yan L, et al. Donor ABCB1 3435 C>T genetic polymorphisms influence early renal function in kidney transplant recipients treated with tacrolimus. Pharmacogenomics. 2016;17:249–57.

    Article  CAS  PubMed  Google Scholar 

  58. Gervasini G, et al. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl Int. 2012;25:471–80.

    Article  CAS  PubMed  Google Scholar 

  59. Yang L, et al. CYP3A5 and ABCB1 polymorphisms in living donors do not impact clinical outcome after kidney transplantation. Pharmacogenomics. 2018;19:895–903.

    Article  CAS  PubMed  Google Scholar 

  60. Woillard J-B, et al. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transpl. 2018. https://doi.org/10.1111/ajt.14894.

    Article  Google Scholar 

  61. Girardin F. Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci. 2006;8:311.

    PubMed  PubMed Central  Google Scholar 

  62. Yamauchi A, et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation. 2002;74:571–2.

    Article  CAS  PubMed  Google Scholar 

  63. Moes AD, et al. Calcineurin inhibitors and hypertension: a role for pharmacogenetics? Pharmacogenomics. 2014;15:1243–51.

    Article  CAS  PubMed  Google Scholar 

  64. Franke RM, et al. Effect of ABCC2 (MRP2) transport function on erythromycin metabolism. Clin Pharmacol Ther. 2011;89:693–701.

    Article  CAS  PubMed  Google Scholar 

  65. El-Sheikh AAK, et al. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl Res J Lab Clin Med. 2013;162:398–409.

    Article  CAS  Google Scholar 

  66. Kobayashi M, et al. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther. 2004;309:1029–35.

    Article  CAS  PubMed  Google Scholar 

  67. Noll BD, et al. Validation of an LC–MS/MS method to measure tacrolimus in rat kidney and liver tissue and its application to human kidney biopsies. Ther Drug Monit. 2013;35(5):617–23.

    CAS  PubMed  Google Scholar 

  68. Laechelt S, et al. Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J. 2011;11:25–34.

    Article  CAS  PubMed  Google Scholar 

  69. Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52:751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Genvigir FDV, et al. Influence of ABCC2, CYP2C8, and CYP2J2 polymorphisms on tacrolimus and mycophenolate sodium-based treatment in Brazilian kidney transplant recipients. Pharmacotherapy. 2017;37:535–45.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao W, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86:609–18.

    Article  CAS  PubMed  Google Scholar 

  72. Renders L, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther. 2007;81:228–34.

    Article  CAS  PubMed  Google Scholar 

  73. Pulk RA, et al. Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics. 2015;16:841–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bai JPF, Lesko LJ, Burckart GJ. Understanding the genetic basis for adverse drug effects: the calcineurin inhibitors. Pharmacotherapy. 2010;30:195–209.

    Article  CAS  PubMed  Google Scholar 

  75. Florez JC, et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes. 2007;56:531–6.

    Article  CAS  PubMed  Google Scholar 

  76. Damon C, et al. Predictive modeling of tacrolimus dose requirement based on high-throughput genetic screening. Am J Transpl. 2017;17:1008–19.

    Article  CAS  Google Scholar 

  77. Shi D, Xie T, Deng J, Niu P, Wu W. CYP3A4 and GCK genetic polymorphisms are the risk factors of tacrolimus-induced new-onset diabetes after transplantation in renal transplant recipients. Eur J Clin Pharmacol. 2018;74:723–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kang ES, et al. A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes. 2008;57:1043–7.

    Article  CAS  PubMed  Google Scholar 

  79. Ghisdal L, et al. TCF7L2 polymorphism associates with new-onset diabetes after transplantation. J Am Soc Nephrol. 2009;20:2459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kurzawski M, Dziewanowski K, Łapczuk J, Wajda A, Droździk M. Analysis of common type 2 diabetes mellitus genetic risk factors in new-onset diabetes after transplantation in kidney transplant patients medicated with tacrolimus. Eur J Clin Pharmacol. 2012;68:1587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158:693–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boivin A-A, et al. Influence of SLCO1B3 genetic variations on tacrolimus pharmacokinetics in renal transplant recipients. Drug Metab Pharmacokinet. 2013;28:274–7.

    Article  CAS  PubMed  Google Scholar 

  83. Cui Y, et al. Genomic-derived markers for early detection of calcineurin inhibitor immunosuppressant-mediated nephrotoxicity. Toxicol Sci. 2011;124:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choi Y, et al. A pharmacogenomic study on the pharmacokinetics of tacrolimus in healthy subjects using the DMET™ Plus platform. Pharmacogenomics J. 2017;17:174–9.

    Article  CAS  PubMed  Google Scholar 

  85. Pasanen L, Holmström L, Sillanpää MJ. Bayesian LASSO, scale space and decision making in association genetics. PLoS One. 2015;10:e0120017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oetting WS, et al. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients. Pharmacogenomics J. 2018;18(3):501–5.

    Article  CAS  PubMed  Google Scholar 

  87. Oetting WS, et al. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics. 2018;19:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chu X, et al. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin Pharmacol Ther. 2013;94:126–41.

    Article  CAS  PubMed  Google Scholar 

  89. Lemaitre F, Antignac M, Verdier M-C, Bellissant E, Fernandez C. Opportunity to monitor immunosuppressive drugs in peripheral blood mononuclear cells: where are we and where are we going? Pharmacol Res. 2013;74:109–12.

    Article  CAS  PubMed  Google Scholar 

  90. Andrews LM, et al. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin Drug Metab Toxicol. 2017;13:1225–36.

    Article  CAS  PubMed  Google Scholar 

  91. Klaasen RA, et al. A longitudinal study of tacrolimus in lymphocytes during the first year after kidney transplantation. Ther Drug Monit. 2018;40(5):558–66.

    Article  CAS  PubMed  Google Scholar 

  92. Lemaitre F, Antignac M, Fernandez C. Monitoring of tacrolimus concentrations in peripheral blood mononuclear cells: application to cardiac transplant recipients. Clin Biochem. 2013;46:1538–41.

    Article  CAS  PubMed  Google Scholar 

  93. Lemaitre F, et al. Pharmacokinetics and pharmacodynamics of tacrolimus in liver transplant recipients: inside the white blood cells. Clin Biochem. 2015;48:406–11.

    Article  CAS  PubMed  Google Scholar 

  94. Pensi D, et al. An UPLC–MS/MS method coupled with automated on-line SPE for quantification of tacrolimus in peripheral blood mononuclear cells. J Pharm Biomed Anal. 2015;107:512–7.

    Article  CAS  PubMed  Google Scholar 

  95. Ghisdal L, et al. Genome-wide association study of acute renal graft rejection. Am J Transpl. 2017;17:201–9.

    Article  CAS  Google Scholar 

  96. Hernandez-Fuentes MP, et al. Long- and short-term outcomes in renal allografts with deceased donors: a large recipient and donor genome-wide association study. Am J Transpl. 2018;18(6):1370–9.

    Article  CAS  Google Scholar 

  97. International Genetics and Translational Research in Transplantation Network (iGeneTRAiN). Design and Implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation. 2015;99:2401.

    Article  Google Scholar 

  98. Marie S, Cisternino S, Buvat I, Declèves X, Tournier N. Imaging probes and modalities for the study of solute carrier O (SLCO)-transport function in vivo. J Pharm Sci. 2017;106:2335–44.

    Article  CAS  PubMed  Google Scholar 

  99. Martinez D, et al. Endogenous metabolites-mediated communication between OAT1/OAT3 and OATP1B1 may explain the association between SLCO1B1 SNPs and methotrexate toxicity. Clin Pharmacol Ther. 2018;104(4):687–98.

    Article  CAS  PubMed  Google Scholar 

  100. Wagne JA. Patient-centered reverse translation. Clin Pharmacol Ther. 2018;103:168–70.

    Article  Google Scholar 

  101. Brackman DJ, Giacomini KM. Reverse translational research of ABCG2 (BCRP) in human disease and drug response. Clin Pharmacol Ther. 2018;103(2):233–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CT wrote the manuscript, and FL, CV, AP, MCV, and EB fully reviewed the manuscript.

Corresponding author

Correspondence to Camille Tron.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Camille Tron, Florian Lemaitre, Céline Verstuyft, Antoine Petitcollin, Marie-Clémence Verdier, and Eric Bellissant have no conflicts of interest to declare that are relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tron, C., Lemaitre, F., Verstuyft, C. et al. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 58, 593–613 (2019). https://doi.org/10.1007/s40262-018-0717-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0717-7

Navigation