Skip to main content

Advertisement

Log in

Complement inhibitors in pediatric kidney diseases: new therapeutic opportunities

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Historically, the complement system (classical, lectin, alternative, and terminal pathways) is known to play a crucial role in the etiopathogenesis of many kidney diseases. Direct or indirect activation in these settings is revealed by consumption of complement proteins at the serum level and kidney tissue deposition seen by immunofluorescence and electron microscopy. The advent of eculizumab has shown that complement inhibitors may improve the natural history of certain kidney diseases. Since then, the number of available therapeutic molecules and experimental studies on complement inhibition has increased exponentially. In our narrative review, we give a summary of the main complement inhibitors that have completed phase II and phase III studies or are currently used in adult and pediatric nephrology. The relevant full-text works, abstracts, and ongoing trials (clinicaltrials.gov site) are discussed. Data and key clinical features are reported for eculizumab, ravulizumab, crovalimab, avacopan, danicopan, iptacopan, pegcetacoplan, and narsoplimab. Many of these molecules have been shown to be effective in reducing proteinuria and stabilizing kidney function in different complement-mediated kidney diseases. Thanks to their efficacy and target specificity, these novel drugs may radically improve the outcome of complement-mediated kidney diseases, contributing to an improvement in our understanding of their underlying pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hebert LA, Cosio FG, Neff JC (1991) Diagnostic significance of hypocomplementemia. Kidney Int 39:811–821

    Article  CAS  PubMed  Google Scholar 

  2. Hillmen P, Szer J, Weitz I, Roth A, Hochsmann B, Panse J, Usuki K, Griffin M, Kiladjian JJ, de Castro C, Nishimori H, Tan L, Hamdani M, Deschatelets P, Francois C, Grossi F, Ajayi T, Risitano A, de la Tour RP (2021) Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 384:1028–1037

    Article  CAS  PubMed  Google Scholar 

  3. Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD (2017) Novel mechanisms and functions of complement. Nat Immunol 18:1288–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO (2016) A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 274:74–97

    Article  CAS  PubMed  Google Scholar 

  5. Goodship TH, Cook HT, Fakhouri F, Fervenza FC, Fremeaux-Bacchi V, Kavanagh D, Nester CM, Noris M, Pickering MC, Rodriguez de Cordoba S, Roumenina LT, Sethi S, Smith RJ, Participants C (2017) Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 91:539–551

  6. Thurman JM, Harrison RA (2022) The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 313:327–338

    Article  PubMed  Google Scholar 

  7. Lemaire M, Noone D, Lapeyraque AL, Licht C, Fremeaux-Bacchi V (2021) Inherited kidney complement diseases. Clin J Am Soc Nephrol 16:942–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spitzer RE, Vallota EH, Forristal J, Sudora E, Stitzel A, Davis NC, West CD (1969) Serum C’3 lytic system in patients with glomerulonephritis. Science 164:436–437

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Cserhalmi M, Papp A, Brandus B, Uzonyi B, Jozsi M (2019) Regulation of regulators: role of the complement factor H-related proteins. Semin Immunol 45:101341

    Article  CAS  PubMed  Google Scholar 

  10. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gale DP, de Jorge EG, Cook HT, Martinez-Barricarte R, Hadjisavvas A, McLean AG, Pusey CD, Pierides A, Kyriacou K, Athanasiou Y, Voskarides K, Deltas C, Palmer A, Fremeaux-Bacchi V, de Cordoba SR, Maxwell PH, Pickering MC (2010) Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tortajada A, Gutierrez E, Goicoechea de Jorge E, Anter J, Segarra A, Espinosa M, Blasco M, Roman E, Marco H, Quintana LF, Gutierrez J, Pinto S, Lopez-Trascasa M, Praga M, Rodriguez de Cordoba S (2017) Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int 92:953–963

    Article  CAS  PubMed  Google Scholar 

  13. Vandendriessche S, Cambier S, Proost P, Marques PE (2021) Complement receptors and their role in leukocyte recruitment and phagocytosis. Front Cell Dev Biol 9:624025

    Article  PubMed  PubMed Central  Google Scholar 

  14. Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Bekker P, Dairaghi D, Seitz L, Leleti M, Wang Y, Ertl L, Baumgart T, Shugarts S, Lohr L, Dang T, Miao S, Zeng Y, Fan P, Zhang P, Johnson D, Powers J, Jaen J, Charo I, Schall TJ (2016) Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized phase 1 clinical study. PLoS One 11:e0164646

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wieslander J, Barr JF, Butkowski RJ, Edwards SJ, Bygren P, Heinegard D, Hudson BG (1984) Goodpasture antigen of the glomerular basement membrane: localization to noncollagenous regions of type IV collagen. Proc Natl Acad Sci U S A 81:3838–3842

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Yung S, Chan TM (2017) Anti-dsDNA antibodies and resident renal cells - Their putative roles in pathogenesis of renal lesions in lupus nephritis. Clin Immunol 185:40–50

    Article  CAS  PubMed  Google Scholar 

  18. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, Stahl GL, Matsushita M, Fujita T, van Kooten C, Daha MR (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734

    Article  CAS  PubMed  Google Scholar 

  20. Seifert L, Zahner G, Meyer-Schwesinger C, Hickstein N, Dehde S, Wulf S, Kollner SMS, Lucas R, Kylies D, Froembling S, Zielinski S, Kretz O, Borodovsky A, Biniaminov S, Wang Y, Cheng H, Koch-Nolte F, Zipfel PF, Hopfer H, Puelles VG, Panzer U, Huber TB, Wiech T, Tomas NM (2023) The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat Commun 14:473

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, Zhou W, Sacks SH (2016) Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest 126:1911–1925

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE (2004) The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe H, Garnier G, Circolo A, Wetsel RA, Ruiz P, Holers VM, Boackle SA, Colten HR, Gilkeson GS (2000) Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J Immunol 164:786–794

    Article  CAS  PubMed  Google Scholar 

  24. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, Bingham C, Cohen DJ, Delmas Y, Douglas K, Eitner F, Feldkamp T, Fouque D, Furman RR, Gaber O, Herthelius M, Hourmant M, Karpman D, Lebranchu Y, Mariat C, Menne J, Moulin B, Nurnberger J, Ogawa M, Remuzzi G, Richard T, Sberro-Soussan R, Severino B, Sheerin NS, Trivelli A, Zimmerhackl LB, Goodship T, Loirat C (2013) Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 368:2169–2181

    Article  CAS  PubMed  Google Scholar 

  25. Jayne DRW, Merkel PA, Schall TJ, Bekker P, ADVOCATE Study Group (2021) Avacopan for the treatment of ANCA associated vasculitis. N Engl J Med 384(599):609

  26. Hillmen P, Hall C, Marsh JC, Elebute M, Bombara MP, Petro BE, Cullen MJ, Richards SJ, Rollins SA, Mojcik CF, Rother RP (2004) Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 350:552–559

    Article  CAS  PubMed  Google Scholar 

  27. Schatz-Jakobsen JA, Zhang Y, Johnson K, Neill A, Sheridan D, Andersen GR (2016) Structural basis for eculizumab-mediated inhibition of the complement terminal pathway. J Immunol 197:337–344

    Article  CAS  PubMed  Google Scholar 

  28. de Souza RM, Correa BHM, Melo PHM, Pousa PA, de Mendonca TSC, Rodrigues LGC, Simoes e Silva AC (2023) The treatment of atypical hemolytic uremic syndrome with eculizumab in pediatric patients: a systematic review. Pediatr Nephrol 38:61–75

  29. Fakhouri F, Hourmant M, Campistol JM, Cataland SR, Espinosa M, Gaber AO, Menne J, Minetti EE, Provot F, Rondeau E, Ruggenenti P, Weekers LE, Ogawa M, Bedrosian CL, Legendre CM (2016) Terminal complement inhibitor eculizumab in adult patients with atypical hemolytic uremic syndrome: a single-arm, open-label trial. Am J Kidney Dis 68:84–93

    Article  CAS  PubMed  Google Scholar 

  30. Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, Coppo R, Emma F, Johnson S, Karpman D, Landau D, Langman CB, Lapeyraque AL, Licht C, Nester C, Pecoraro C, Riedl M, van de Kar NC, Van de Walle J et al (2016) An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 31:15–39

  31. Fakhouri F, Fila M, Hummel A, Ribes D, Sellier-Leclerc AL, Ville S, Pouteil-Noble C, Coindre JP, Le Quintrec M, Rondeau E, Boyer O, Provot F, Djeddi D, Hanf W, Delmas Y, Louillet F, Lahoche A, Favre G, Chatelet V, Launay EA, Presne C, Zaloszyc A, Caillard S, Bally S, Raimbourg Q, Tricot L, Mousson C, Le Thuaut A, Loirat C, Fremeaux-Bacchi V (2021) Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood 137:2438–2449

    Article  CAS  PubMed  Google Scholar 

  32. Galbusera M, Noris M, Gastoldi S, Bresin E, Mele C, Breno M, Cuccarolo P, Alberti M, Valoti E, Piras R, Donadelli R, Vivarelli M, Murer L, Pecoraro C, Ferrari E, Perna A, Benigni A, Portalupi V, Remuzzi G (2019) An ex vivo test of complement activation on endothelium for individualized eculizumab therapy in hemolytic uremic syndrome. Am J Kidney Dis 74:56–72

    Article  CAS  PubMed  Google Scholar 

  33. Cugno M, Capone V, Griffini S, Grovetti E, Pintarelli G, Porcaro L, Clementi E, Ardissino G (2022) Eculizumab treatment in atypical hemolytic uremic syndrome: correlation between functional complement tests and drug levels. J Nephrol 35:1205–1211

    Article  CAS  PubMed  Google Scholar 

  34. Bouwmeester RN, Duineveld C, Wijnsma KL, Bemelman FJ, van der Heijden JW, van Wijk JAE, Bouts AHM, van de Wetering J, Dorresteijn E, Berger SP, Gracchi V, van Zuilen AD, Keijzer-Veen MG, de Vries APJ, van Rooij RWG, Engels F, Altena W, de Wildt R, van Kempen E, Adang EM, Ter Avest M, Ter Heine R, Volokhina EB, van den Heuvel L, Wetzels JFM, van de Kar N (2023) Early eculizumab withdrawal in patients with atypical hemolytic uremic syndrome in native kidneys is safe and cost-effective: results of the CUREiHUS study. Kidney Int Rep 8:91–102

    Article  PubMed  Google Scholar 

  35. McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR (2017) High risk for invasive meningococcal disease among patients receiving eculizumab (soliris) despite receipt of meningococcal vaccine. Morb Mortal Wkly Rep 66:734–737

    Article  Google Scholar 

  36. Hayes W, Tschumi S, Ling SC, Feber J, Kirschfink M, Licht C (2015) Eculizumab hepatotoxicity in pediatric aHUS. Pediatr Nephrol 30:775–781

    Article  PubMed  Google Scholar 

  37. Bagga A, Khandelwal P, Mishra K, Thergaonkar R, Vasudevan A, Sharma J, Patnaik SK, Sinha A, Sethi S, Hari P, Dragon-Durey MA, Indian Society of Pediatric Nephrology (2019) Hemolytic uremic syndrome in a developing country: consensus guidelines. Pediatr Nephrol 34:1482

  38. Nishimura J, Yamamoto M, Hayashi S, Ohyashiki K, Ando K, Brodsky AL, Noji H, Kitamura K, Eto T, Takahashi T, Masuko M, Matsumoto T, Wano Y, Shichishima T, Shibayama H, Hase M, Li L, Johnson K, Lazarowski A, Tamburini P, Inazawa J, Kinoshita T, Kanakura Y (2014) Genetic variants in C5 and poor response to eculizumab. N Engl J Med 370:632–639

    Article  CAS  PubMed  Google Scholar 

  39. Langemeijer SNJ, Weston-Davies W, Nunn MA, Kanakura Y, Mackie IJ, Muus P (2015) C5 polymorphism in a Dutch patient with paroxysmal nocturnal hemoglobinuria (PNH) and no Asian ancestry, resistant to eculizumab, but in vitro sensitive to coversin. Blood 126:1209

  40. Husain D, Barron B, Barron AG, Sandokji I, Marsenic O, Warejko JK (2021) Atypical hemolytic uremic syndrome due to DGKE mutation and response to eculizumab: lessons for the clinical nephrologist. J Nephrol 34:1331–1335

    Article  CAS  PubMed  Google Scholar 

  41. Welte T, Arnold F, Westermann L, Rottmann FA, Hug MJ, Neumann-Haefelin E, Ganner A (2023) Eculizumab as a treatment for C3 glomerulopathy: a single-center retrospective study. BMC Nephrol 24:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruggenenti P, Daina E, Gennarini A, Carrara C, Gamba S, Noris M, Rubis N, Peraro F, Gaspari F, Pasini A, Rigotti A, Lerchner RM, Santoro D, Pisani A, Pasi A, Remuzzi G, EAGLE Study Group (2019) C5 convertase blockade in membranoproliferative glomerulonephritis: a single-arm clinical trial. Am J Kidney Dis 74:238

  43. Le Quintrec M, Lapeyraque AL, Lionet A, Sellier-Leclerc AL, Delmas Y, Baudouin V, Daugas E, Decramer S, Tricot L, Cailliez M, Dubot P, Servais A, Mourey-Epron C, Pourcine F, Loirat C, Fremeaux-Bacchi V, Fakhouri F (2018) Patterns of clinical response to eculizumab in patients with C3 glomerulopathy. Am J Kidney Dis 72:84–92

    Article  PubMed  Google Scholar 

  44. Bomback AS, Smith RJ, Barile GR, Zhang Y, Heher EC, Herlitz L, Stokes MB, Markowitz GS, D’Agati VD, Canetta PA, Radhakrishnan J, Appel GB (2012) Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol 7:748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oosterveld MJ, Garrelfs MR, Hoppe B, Florquin S, Roelofs JJ, van den Heuvel LP, Amann K, Davin JC, Bouts AH, Schriemer PJ, Groothoff JW (2015) Eculizumab in pediatric dense deposit disease. Clin J Am Soc Nephrol 10:1773–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Busutti M, Diomedi-Camassei F, Donadelli R, Mele C, Emma F, Vivarelli M (2021) Efficacy of eculizumab in coexisting complement C3 glomerulopathy and atypical hemolytic uremic syndrome. Kidney Int Rep 6:534–537

    Article  PubMed  Google Scholar 

  47. Buelli S, Zoja C, Remuzzi G, Morigi M (2019) Complement activation contributes to the pathophysiology of Shiga toxin-associated hemolytic uremic syndrome. Microorganisms 7:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lapeyraque AL, Malina M, Fremeaux-Bacchi V, Boppel T, Kirschfink M, Oualha M, Proulx F, Clermont MJ, Le Deist F, Niaudet P, Schaefer F (2011) Eculizumab in severe Shiga-toxin-associated HUS. N Engl J Med 364:2561–2563

    Article  CAS  PubMed  Google Scholar 

  49. Mahat U, Matar RB, Rotz SJ (2019) Use of complement monoclonal antibody eculizumab in Shiga toxin producing Escherichia coli associated hemolytic uremic syndrome: a review of current evidence. Pediatr Blood Cancer 66:e27913

    Article  PubMed  Google Scholar 

  50. Gitiaux C, Krug P, Grevent D, Kossorotoff M, Poncet S, Eisermann M, Oualha M, Boddaert N, Salomon R, Desguerre I (2013) Brain magnetic resonance imaging pattern and outcome in children with haemolytic-uraemic syndrome and neurological impairment treated with eculizumab. Dev Med Child Neurol 55:758–765

    Article  PubMed  Google Scholar 

  51. Pape L, Hartmann H, Bange FC, Suerbaum S, Bueltmann E, Ahlenstiel-Grunow T (2015) Eculizumab in typical hemolytic uremic syndrome (HUS) with neurological involvement. Medicine (Baltimore) 94:e1000

    Article  CAS  PubMed  Google Scholar 

  52. Mauras M, Bacchetta J, Duncan A, Lavocat MP, Rohmer B, Javouhey E, Collardeau-Frachon S, Sellier-Leclerc AL (2019) Escherichia coli-associated hemolytic uremic syndrome and severe chronic hepatocellular cholestasis: complication or side effect of eculizumab? Pediatr Nephrol 34:1289–1293

    Article  PubMed  Google Scholar 

  53. Yesilbas O, Yozgat CY, Akinci N, Sonmez S, Tekin E, Talebazadeh F, Jafarov U, Temur HO, Yozgat Y (2021) Acute myocarditis and eculizumab caused severe cholestasis in a 17-month-old child who has hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli. J Pediatr Intensive Care 10:216–220

    Article  PubMed  Google Scholar 

  54. Sheridan D, Yu ZX, Zhang Y, Patel R, Sun F, Lasaro MA, Bouchard K, Andrien B, Marozsan A, Wang Y, Tamburini P (2018) Design and preclinical characterization of ALXN1210: a novel anti-C5 antibody with extended duration of action. PLoS One 13:e0195909

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rondeau E, Scully M, Ariceta G, Barbour T, Cataland S, Heyne N, Miyakawa Y, Ortiz S, Swenson E, Vallee M, Yoon SS, Kavanagh D, Haller H, 311 Study Group (2020) The long-acting C5 inhibitor, ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int 97:1296

  56. Tanaka K, Adams B, Aris AM, Fujita N, Ogawa M, Ortiz S, Vallee M, Greenbaum LA (2021) The long-acting C5 inhibitor, ravulizumab, is efficacious and safe in pediatric patients with atypical hemolytic uremic syndrome previously treated with eculizumab. Pediatr Nephrol 36:889–898

    Article  PubMed  Google Scholar 

  57. Ariceta G, Dixon BP, Kim SH, Kapur G, Mauch T, Ortiz S, Vallee M, Denker AE, Kang HG, Greenbaum LA, 311 Study Group (2021) The long-acting C5 inhibitor, ravulizumab, is effective and safe in pediatric patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int 100:237

  58. McKeage K (2019) Ravulizumab: first global approval. Drugs 79:347–352

    Article  CAS  PubMed  Google Scholar 

  59. Zelek WM, Stott M, Walters D, Harris CL, Morgan BP (2018) Characterizing a pH-switch anti-C5 antibody as a tool for human and mouse complement C5 purification and cross-species inhibition of classical and reactive lysis. Immunology 155:396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukuzawa T, Sampei Z, Haraya K, Ruike Y, Shida-Kawazoe M, Shimizu Y, Gan SW, Irie M, Tsuboi Y, Tai H, Sakiyama T, Sakamoto A, Ishii S, Maeda A, Iwayanagi Y, Shibahara N, Shibuya M, Nakamura G, Nambu T, Hayasaka A, Mimoto F, Okura Y, Hori Y, Habu K, Wada M, Miura T, Tachibana T, Honda K, Tsunoda H, Kitazawa T, Kawabe Y, Igawa T, Hattori K, Nezu J (2017) Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases. Sci Rep 7:1080

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  61. Roth A, Nishimura JI, Nagy Z, Gaal-Weisinger J, Panse J, Yoon SS, Egyed M, Ichikawa S, Ito Y, Kim JS, Ninomiya H, Schrezenmeier H, Sica S, Usuki K, Sicre de Fontbrune F, Soret J, Sostelly A, Higginson J, Dieckmann A, Gentile B, Anzures-Cabrera J, Shinomiya K, Jordan G, Biedzka-Sarek M, Klughammer B, Jahreis A, Bucher C, Peffault de Latour R (2020) The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood 135:912–920

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nishimura JI, Usuki K, Ramos J, Ichikawa S, Buri M, Kiialainen A, Sostelly A, Peffault de Latour R, Paz-Priel I, Roth A (2022) Crovalimab for treatment of patients with paroxysmal nocturnal haemoglobinuria and complement C5 polymorphism: subanalysis of the phase 1/2 COMPOSER study. Br J Haematol 198:e46–e50

    Article  CAS  PubMed  Google Scholar 

  63. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852

    Article  CAS  PubMed  Google Scholar 

  64. Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T, Wang Y, Seitz LC, Penfold ME, Gan L, Hu P, Lu B, Gerard NP, Gerard C, Schall TJ, Jaen JC, Falk RJ, Jennette JC (2014) C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol 25:225–231

    Article  CAS  PubMed  Google Scholar 

  65. Jayne DRW, Bruchfeld AN, Harper L, Schaier M, Venning MC, Hamilton P, Burst V, Grundmann F, Jadoul M, Szombati I, Tesar V, Segelmark M, Potarca A, Schall TJ, Bekker P, CLEAR Study Group (2017) Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol 28:2767

  66. Merkel PA, Niles J, Jimenez R, Spiera RF, Rovin BH, Bomback A, Pagnoux C, Potarca A, Schall TJ, Bekker P, Investigators CLASSIS (2020) Adjunctive treatment with avacopan, an oral C5a receptor inhibitor, in patients with antineutrophil cytoplasmic antibody-associated vasculitis. ACR Open Rheumatol 2:662–671

  67. Bekker PMP, Jayne D (2022) Safety of avacopan in ANCA-associated vasculitis: combined data from three clinical trials. Arthritis Rheumatol. https://doi.org/10.1002/art.42355

    Article  PubMed  PubMed Central  Google Scholar 

  68. van Leeuwen JR, Popov T, Obergfell A, Rabelink TJ, Teng YKO (2023) Preliminary assessment of safety and tolerability of avacopan during the early access program for ANCA-associated vasculitis. Biologics 17:11–14

    PubMed  PubMed Central  Google Scholar 

  69. Morimoto N, Mori T, Shioji S, Watanabe H, Sakai K, Mori K, Yamamura A, Hanioka A, Akagi Y, Fujiki T, Mandai S, Mori Y, Ando F, Susa K, Iimori S, Naito S, Sohara E, Uchida S (2023) Thrombocytopenia during avacopan administration: a case report. Int J Rheum Dis. https://doi.org/10.1111/1756-185X.14645

    Article  PubMed  Google Scholar 

  70. Bruchfeld A, Magin H, Nachman P, Parikh S, Lafayette R, Potarca A, Miao S, Bekker P (2022) C5a receptor inhibitor avacopan in immunoglobulin A nephropathy-an open-label pilot study. Clin Kidney J 15:922–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bomback AS HL, Yue H, Kedia PP, Schall TJ, Bekker P (2021) Effect of avacopan, a selective C5a receptor inhibitor, on C3G histologic index of disease chronicity session information. Late-Breaking Clinical Trials Posters, November 04, 2021. https://www.asn-online.org/education/kidneyweek/2021/program-abstract.aspx?controlId=3639829

  72. Forneris F, Ricklin D, Wu J, Tzekou A, Wallace RS, Lambris JD, Gros P (2010) Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330:1816–1820

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Maibaum J, Liao SM, Vulpetti A, Ostermann N, Randl S, Rudisser S, Lorthiois E, Erbel P, Kinzel B, Kolb FA, Barbieri S, Wagner J, Durand C, Fettis K, Dussauge S, Hughes N, Delgado O, Hommel U, Gould T, Mac Sweeney A, Gerhartz B, Cumin F, Flohr S, Schubart A, Jaffee B, Harrison R, Risitano AM, Eder J, Anderson K (2016) Small-molecule factor D inhibitors targeting the alternative complement pathway. Nat Chem Biol 12:1105–1110

    Article  CAS  PubMed  Google Scholar 

  74. Yuan X, Gavriilaki E, Thanassi JA, Yang G, Baines AC, Podos SD, Huang Y, Huang M, Brodsky RA (2017) Small-molecule factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Haematologica 102:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aradottir SS, Kristoffersson AC, Roumenina LT, Bjerre A, Kashioulis P, Palsson R, Karpman D (2021) Factor D inhibition blocks complement activation induced by mutant factor B associated with atypical hemolytic uremic syndrome and membranoproliferative glomerulonephritis. Front Immunol 12:690821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nester C, Appel GB, Bomback AS, Bouman KP, Cook HT, Daina E, Dixon BP, Rice K, Najafian N, Hui J, Podos SD, Langman CB, Lightstone L, Parikh SV, Pickering MC, Sperati CJ, Trachtman H, Tumlin J, de Vries AP, Wetzels JFM, Remuzzi G (2022) Clinical outcomes of patients with C3G or IC-MPGN treated with the factor D inhibitor danicopan: final results from two phase 2 studies. Am J Nephrol 53:687–700

    Article  CAS  PubMed  Google Scholar 

  77. Schubart A, Anderson K, Mainolfi N, Sellner H, Ehara T, Adams CM, Mac Sweeney A, Liao SM, Crowley M, Littlewood-Evans A, Sarret S, Wieczorek G, Perrot L, Dubost V, Flandre T, Zhang Y, Smith RJH, Risitano AM, Karki RG, Zhang C, Valeur E, Sirockin F, Gerhartz B, Erbel P, Hughes N, Smith TM, Cumin F, Argikar UA, Haraldsson B, Mogi M, Sedrani R, Wiesmann C, Jaffee B, Maibaum J, Flohr S, Harrison R, Eder J (2019) Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U S A 116:7926–7931

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Muri L, Ispasanie E, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammuller M, Pluschke G (2021) Alternative complement pathway inhibition abrogates pneumococcal opsonophagocytosis in vaccine-naive, but not in vaccinated individuals. Front Immunol 12:732146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ispasanie E, Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammuller M, Pluschke G (2021) Alternative complement pathway inhibition does not abrogate meningococcal killing by serum of vaccinated individuals. Front Immunol 12:747594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong EKPM, Nester CM, Cavero escribano T, Karras A, Lequintrec-Donnette M, Lightstone L, Eisenberger U, Soler MJ, Biondani A, Chaperon F, Kulmatycki KM, Milojevic JM, Nidamarthy PK, Webb N, Junge G, Remuzzi G (2021a) Iptacopan, a novel oral complement factor B (FB) inhibitor, significantly reduces proteinuria and C3 deposit scores in native and transplanted kidneys C3 glomerulopathy (C3G) patients. J Am Soc Nephrol 32:B8

  81. Wong EKS, Praga M, Nester CM, Lequintrec-Donnette M, Daiana E, Remuzzi G, Trapani A, Wang Y, Liu J, Junge G, Meier M, Webb N (2021b) FC 036IPTACOPAN (LNP023): a novel oral complement alternative pathway factor B inhibitor safely and effectively stabilises eGFR in C3 glomerulopathy. Nephrol Dial Transplant 36(Suppl 1). https://doi.org/10.1093/ndt/gfab121.005

  82. Bomback AS, Kavanagh D, Vivarelli M, Meier M, Wang Y, Webb NJA, Trapani AJ, Smith RJH (2022) Alternative complement pathway inhibition with iptacopan for the treatment of C3 glomerulopathy-study design of the APPEAR-C3G trial. Kidney Int Rep 7:2150–2159

    Article  PubMed  PubMed Central  Google Scholar 

  83. Perkovic V, Rovin B, Zhang H, Kashihara N, Maes B, Rizk D, Wang W, Meier M, Kollins D, Papachristofi O, Charney A, Barratt J (2021) MO148A Multi-center, randomized, double-blind, placebo controlled, parallel group, phase iii study to evaluate the efficacy and safety of lnp023 in primary IgA nephropathy patients. Nephrol Dial Transplant 36 (Suppl 1). https://doi.org/10.1093/ndt/gfab092.0026

  84. Simon-Tillaux N, Chauvet S, El Mehdi D, Deschatelets P, Fremeaux-Bacchi V (2019) APL-2 prevents both C3 and C5 convertase formation and activity: a potential therapeutic for renal diseases. J Am Soc Nephrol 30:918

  85. Dixon BP, Greenbaum LA, Huang L, Rajan SK, Robinson D, Garovoy MR, Gilmore W, Picazio N, Robertson N, Ajayi T, Di casoli C, Deschatelets P, Francois CG, Kocinsky HS, Grossi F (2020) C3 inhibition with pegcetacoplan targets the underlying disease process of C3 glomerulopathy (C3G) and improves proteinuria. J Am Soc Nephrol 31:577

  86. Gertz M, Roman E, Fattizzo B, Shum M, Hanna W, Ortega G, Liles D, Senecal F, Lentz S, Hamdani M, Stout F, Shen A, Deschatelets P, Francois C, Grossi F (2019) Inhibition of C3 with APL-2 controls haemolysis and increases haemoglobin levels in subjects with autoimmune haemolytic anaemia (AIHA). Br J Haematol 185(Suppl 1):24

  87. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, Heier JS, Wykoff CC, Singerman LJ, Abraham P, Grassmann F, Nuernberg P, Weber BHF, Deschatelets P, Kim RY, Chung CY, Ribeiro RM, Hamdani M, Rosenfeld PJ, Boyer DS, Slakter JS, Francois CG (2020) Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology 127:186–195

    Article  PubMed  Google Scholar 

  88. Dobo J, Kocsis A, Gal P (2018) Be on target: strategies of targeting alternative and lectin pathway components in complement-mediated diseases. Front Immunol 9:1851

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lafayette RA, Rovin BH, Reich HN, Tumlin JA, Floege J, Barratt J (2020) Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int Rep 5:2032–2041

    Article  PubMed  PubMed Central  Google Scholar 

  90. Freeman J, Cummings J, Chuidian M, Dudler T (2020) Development of pharmacodynamic assays to assess ex vivo MASP-2 inhibition and their use to characterize the pharmacodynamics of narsoplimab (OMS721) in humans and monkeys. Blood 136:26–27

  91. Storb R (2019) HSCT: Historical perspective. In: Carreras E, Dufour C, Mohty M, Kroger N (eds) The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies. Springer, Cham, pp 318–322

    Google Scholar 

  92. Carreras E, Diaz-Ricart M (2011) The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transplant 46:1495–1502

    Article  CAS  PubMed  Google Scholar 

  93. Elhadad S, Chapin J, Copertino D, Van Besien K, Ahamed J, Laurence J (2021) MASP2 levels are elevated in thrombotic microangiopathies: association with microvascular endothelial cell injury and suppression by anti-MASP2 antibody narsoplimab. Clin Exp Immunol 203:96–104

    Article  CAS  PubMed  Google Scholar 

  94. Khaled SK, Claes K, Goh YT, Kwong YL, Leung N, Mendrek W, Nakamura R, Sathar J, Ng E, Nangia N, Whitaker S, Rambaldi A, OMS721-TMA-001 Study Group Members (2022) Narsoplimab, a mannan-binding lectin-associated serine protease-2 inhibitor, for the treatment of adult hematopoietic stem-cell transplantation-associated thrombotic microangiopathy. J Clin Oncol 40:2457

  95. Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, Wyatt RJ (2019) The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol 10:504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Barratt JCK, Lafayette R (2022) Long-term Phase 2 efficacy of the MASP-2 inhibitor narsoplimab for treatment of severe IgA nephropathy. Kidney Int Rep 7:S45

    Google Scholar 

  97. Kemper C, Ferreira VP, Paz JT, Holers VM, Lionakis MS, Alexander JJ (2023) Complement: the road less traveled. J Immunol 210:119–125

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Italian Ministry of Health with “Current Research funds” and, regarding Joshua M. Thurman, by the National Institutes of Health R01 DK076690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Vivarelli.

Ethics declarations

Conflict of interest

Joshua M. Thurman holds stock in and receives royalties from Q32 Bio, Inc., a company developing complement inhibitors. Marina Vivarelli receives consulting fees from Novartis, Roche, Bayer, Apellis, BioCryst, Travere, WebMD, PureSpring, and Chinook; participated in sponsored trials by Alexion, Roche, Novartis, Bayer, Chinook, Travere, and Apellis; and received speaker fees from Alexion, Glaxo, Roche, Novartis, and Vifor. These have no impact on the current publication. Luca Antonucci declares no conflicts of interest.

Additional information

Multiple choice answers

1. a; 2. c; 3. c; 4. b; 5. d

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonucci, L., Thurman, J.M. & Vivarelli, M. Complement inhibitors in pediatric kidney diseases: new therapeutic opportunities. Pediatr Nephrol 39, 1387–1404 (2024). https://doi.org/10.1007/s00467-023-06120-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06120-8

Keywords

Navigation