Skip to main content
Log in

Therapeutic Potential of p38 MAP Kinase Inhibition in the Management of Cardiovascular Disease

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

p38 mitogen-activated protein kinases (p38 MAPKs) are key signalling molecules that regulate cellular behavior in response to environmental stresses. They regulate pro-inflammatory cytokines and therefore p38 MAPKs are implicated in the pathogenesis of many inflammatory-driven conditions, including atherosclerosis. Therapeutic inhibition of p38 MAPKs to attenuate inflammation has been the focus of comprehensive research in the last 2 decades, following the discovery of p38α as the molecular target of pyrindinyl imidazole compounds, which suppress the cytokines tumor necrosis factor-α and interleukin-1. The potential of p38 MAPK inhibitors was initially explored within archetypal inflammatory conditions such as rheumatoid arthritis and Crohn’s disease, but early studies demonstrated poor clinical efficacy and unacceptable side effects. Subsequent clinical trials evaluating different p38 MAPK inhibitor compounds in disease models such as chronic obstructive pulmonary disease (COPD) and atherosclerosis have shown potential clinical efficacy. This review aims to provide succinct background information regarding the p38 MAPK signaling pathway, a focus of p38 MAPKs in disease, and a brief summary of relevant pre-clinical studies. An update of human clinical trial experience encompassing a clinically orientated approach, dedicated to cardiovascular disease follows. It provides a current perspective of the therapeutic potential of p38 MAPK inhibitors in the cardiovascular domain, including safety, tolerability, and pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor Study 2010. Lancet. 2012;380(9859):2224–60.

    Article  PubMed  Google Scholar 

  3. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74 (Review).

    Google Scholar 

  4. Spagnoli LG, Bonanno E, Sangiorgi G, Mauriello A. Role of inflammation in atherosclerosis. J Nucl Med. 2007;48(11):1800–15.

    Article  PubMed  Google Scholar 

  5. Libby P, Nahrendorf M, Swirski FK. Monocyte heterogeneity in cardiovascular disease. Semin Immunopathol. 2013;35(5):553–62.

    Article  CAS  PubMed  Google Scholar 

  6. del Rincon ID, Williams K, Stern MP, Freeman GL, Escalante A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001;44:2737–45.

    Article  PubMed  Google Scholar 

  7. Goodson NJ, Symmons DP, Scott DG, Bunn D, Lunt M, Silman AJ. Baeline levels of C-reactive protein and prediction of death from cardiovascular disease in patients with inflammatory poly-arthritis: a ten-year follow up study of a primary care-based inception cohort. Arthritis Rheum. 2005;52:2293–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M, Donald AE, Palacios M, Griffin GE, Deanfield JE, MacAllister RJ, Vallance P. Acute systemic inflammation inpairs endothelium-dependent dilatation in humans. Circulation. 2000;102:994–9.

    Article  CAS  PubMed  Google Scholar 

  9. Yasmin, McEniery CM, Wallace S, Mackenzie IS, Cockcroft JR, Wilkinson IB. C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler Thromb Vasc Biol. 2004;24:969–974.

  10. McEniery CM, Wilkinson IB. Large artery stiffness and inflammation. J Hum Hypertens. 2005;19(7):507–9.

    Article  CAS  PubMed  Google Scholar 

  11. Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092–104.

    Article  CAS  PubMed  Google Scholar 

  12. Puri R, Nissen SE, Libby P, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Raichlen JS, Uno K, Kataoka Y, Nicholls SJ. C-reactive protein, but not low-density lipoprotein cholesterol levels, associate with coronary atheroma regression and cardiovascular events following maximally intensive statin therapy. Circulation. 2013;128(22):2395-403

    Google Scholar 

  13. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFayden JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    Google Scholar 

  14. Yoon SS, Dillon CF, Carroll M, Illoh K, Ostchega Y. Effects of statins on serum inflammatory markers: the U.S. National Health and Nutrition Examination Survey 1999–2004. J Atheroscler Thromb. 2010;17(11):1176–82.

    Article  CAS  PubMed  Google Scholar 

  15. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605.

    Article  CAS  PubMed  Google Scholar 

  16. Marber MS, Rose B, Wang Y. The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol. 2011;51(4):485–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Martin ED, De Nicola GF, Marber MS. p38 alpha mitogen-activated protein kinase for ischemic heart disease. Circulation. 2012;126:357–68.

    Article  Google Scholar 

  18. Kumar S, Boehm J, Lee JC. P38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory disease. Nat Rev Drug Discov. 2003;2(9):717–26.

    Article  CAS  PubMed  Google Scholar 

  19. Zarubin T, Han J. Activation and signalling of the p38 MAP kinase pathway. Cell Res. 2005;15(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cuenda A, Rousseau S. p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta. 2007;1773(8):1358–75.

    Article  CAS  PubMed  Google Scholar 

  21. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta. 2005;1754:253–62.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Blake SM, Emery JG. Intracellular signalling pathways as a target for the treatment of rheumatoid arthritis. Curr Opin Pharmacol. 2001;1(3):307–13.

    Article  CAS  PubMed  Google Scholar 

  23. Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41(6):631–8.

    Article  CAS  PubMed  Google Scholar 

  24. MacNee W. Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):258–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Renda T, Baraldo S, Pelaia G, et al. Increased activation of p38 MAPK in COPD. Eur Respir J. 2008;31:62–9.

    Article  CAS  PubMed  Google Scholar 

  26. Gaffey K, Reynolds S, Plumb J, Kaur M, Singh D. Increased phosphorylated p38 mitogen activated protein kinase in COPD lungs. Eur Respir J. 2013;42(1):28–41.

    Article  CAS  PubMed  Google Scholar 

  27. Lu X, Kakkar V. The role of heat shock protein (HSP) in atherosclerosis: Pathophysiology and clinical opportunities. Curr Med Chem. 2010;17(10):957–73.

    Article  CAS  PubMed  Google Scholar 

  28. Aukrust P, Sandberg WJ, Otterdal K, Vinge LE, Gullestad L, Yndestad A, Halvorsen B, Ueland T. Tumor necrosis factor superfamily molecules in acute coronary syndromes. Ann Med. 2011;43(2):90–103.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao M, Liu Y, Wang X, New L, Han J, Brunk UT. Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS. 2002;110(6):458–68.

    Article  CAS  PubMed  Google Scholar 

  30. Hoefen RJ, Berk BC. The role of MAP kinases in endothelial activation. Vascul Pharmacol. 2002;38(5):271–3.

    Article  CAS  PubMed  Google Scholar 

  31. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol. 2001;12:383–9.

    Article  CAS  PubMed  Google Scholar 

  32. Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H. Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun. 2009;380:355–60.

    Article  CAS  PubMed  Google Scholar 

  33. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999;99(13):1685–91.

    Article  CAS  PubMed  Google Scholar 

  34. Kumphune S, Bassi R, Jacquet S, Sicard P, Clark JE, Verma S, Avkiran M, O’Keefe SJ, Marber MS. A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorlyation aggravates myocardial infarction and is prevent by direct binding of SB203580. J Biol Chem. 2010;285:2968–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Koivisto E, Kaikkonen L, Tokola H, Pikkarainen S, Aro J, Pennanen H, Karvonen T, Rysä J, Kerkelä R, Ruskoaho H. Distinct regulation of B-type natriuretic peptide transcription by p38 MAPK isoforms. Mol Cell Endocrinol. 2011;338(1–2):18–27.

    Article  CAS  PubMed  Google Scholar 

  36. Liao P, Wang SQ, Wang S, Zheng M, Zheng M, Zhang SJ, Cheng H, Wang Y, Xiao RP. p38 mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res. 2002;90(2):190–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yin H, Zhang J, Lin H, Wang R, Qiao Y, Wang B, Liu F. p38 mitogen-activated protein kinase inhibition decreased TNF-alpha secretion and protects against left ventricular remodeling in rats with myocardial ischemia. Inflammation. 2008;31:65–73.

    Article  CAS  PubMed  Google Scholar 

  38. Marber MS, Molkentin JD, Force T. Developing small molecules to inhibit kinases unkind to the heart: p38 MAPK as a case in point. Drug Discov Today Dis Mech. 2010;7(2):e123–7.

    Google Scholar 

  39. Clark JE, Sarafraz N, Marber MS. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Ther. 2007;116(2):192–206.

    Article  CAS  PubMed  Google Scholar 

  40. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology. 2000;47:185–201.

    Article  CAS  PubMed  Google Scholar 

  41. Gum RJ, McLaughlin MM, Kumar S, Wang Z, Bower MJ, Lee JC, Adams JL, Livi GP, Goldsmith EJ, Young PR. Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB 203580, by alteration of one or more amino acids within the ATP binding pocket. J Biol Chem. 1998;273(25):15605–10.

    Article  CAS  PubMed  Google Scholar 

  42. Seeger FH, Sedding D, Langheinrich AC, Haendeler J, Zeiher AM, Dimmeler S. Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol. 2010;105(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  43. Proctor BM, Jin X, Lupu TS, Muglia LJ, Semenkovich CF, Muslin AJ. Requirement for p38 mitogen-activated protein kinase activity in neo-intima formation after vascular injury. Circulation. 2008;118:658–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ge JJ, Zhao ZW, Zhou ZC, Wu S, Zhang R, Pan FM, Abendroth DK. p38 MAPK inhibitor, CBS3830 limits vascular remodelling in arterialised vein grafts. Heart Lung Circ. 2013;22(9):751–8.

    Article  PubMed  Google Scholar 

  45. Willette RN, Eybye ME, Olzinski AR, Behm DJ, Aiyar N, Maniscalco K, Bentley RG, Coatney RW, Zhao S, Westfall TD, Doe CP. Differential effects of p38 mitogen-activated protein kinase and cyclooxygenase 2 inhibitors in a model of cardiovascular disease. J Pharmacol Exp Ther. 2009;330(3):964–70.

    Article  CAS  PubMed  Google Scholar 

  46. Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, Wang Y. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation. 2005;111(19):2494–502.

    Article  CAS  PubMed  Google Scholar 

  47. Liu YH, Wang D, Rhaleb NE, Yang XP, Xu J, Sankey SS, Rudolph AE, Carretero OA. Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction. J Card Fail. 2005;11(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  48. Schreiber S, Feagan B, D’Haens G, Colombel JF, Geboes K, Yurcov M, Isakov V, Golovenko O, Bernstein CN, Ludwig D, Winter T, Meier U, Yong C, Steffgen J, BIRB 796 Study Group. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006;4(3):325–34.

    Article  CAS  PubMed  Google Scholar 

  49. Hammaker D, Firestein GS. “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis. 2010;69(Suppl 1):i77–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Genovese MC. Inhibition of p38: has the fat lady sung? Arthritis Rheum. 2009;60(2):317–20.

    Article  PubMed  Google Scholar 

  51. Goldstein DM, Kuglstatter A, Lou Y, Soth MJ. Selective p38alpha inhibitors clinically evaluated for the treatment of chronic inflammatory disorders. J Med Chem. 2010;53:2345–53.

    Article  CAS  PubMed  Google Scholar 

  52. Li L, Li G, Yu C, Li Y. A meta-analysis of the role of p38 mitogen-activated protein kinase inhibitors in patients with active rheumatoid arthritis. Clin Rheumatol. 2013;32(12):1697-702

    Google Scholar 

  53. Salgado E, Maneiro JR, Carmona L, Gomez-Reino JJ. Safety profile of protein kinase inhibitors in rheumatoid arthritis: systematic review and meta-analysis. Ann Rheum Dis. 2013 (Epub ahead of print).

  54. Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, Bird N, Ostenfeld T, Chizh BA. Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain. 2011;15(10):1040–8.

    Article  CAS  PubMed  Google Scholar 

  55. Singh D, Smyth L, Borrill Z, Sweeney L, Tal-Singer R. A randomized, placebo-controlled study of the effects of the p38 MAPK inhibitor SB-681323 on blood biomarkers of inflammation in COPD patients. J Clin Pharmacol. 2010;50(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  56. Ostenfeld T, Krishen A, Lai RY, Bullman J, Baines AJ, Green J, Anand P, Kelly M. Analgesic efficacy and safety of the novel p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain following peripheral nerve injury: a double-blind, placebo-controlled study. Eur J Pain. 2013;17(6):844–57.

    Article  CAS  PubMed  Google Scholar 

  57. Lomas DA, Lipson DA, Miller BE, Willits L, Keene O, Barnacle H, et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease. J Clin Pharmacol. 2012;52(3):416–24.

    Article  CAS  PubMed  Google Scholar 

  58. Elkhawad M, Rudd JH, Sarov-Blat L, Cai G, Wells R, Davies LC, Collier DJ, Marber MS, Choudhury RP, Fayad ZA, Tawakol A, Gleeson FV, Lepore JJ, Davis B, Willette RN, Wilkinson IB, Sprecher DL, Cheriyan J. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc Imaging. 2012;5(9):911–22.

    Article  PubMed  Google Scholar 

  59. Cheriyan J, Webb AJ, Sarov-Blat L, Elkhawad M, Wallace SM, Mäki-Petäjä KM, Collier DJ, Morgan J, Fang Z, Willette RN, Lepore JJ, Cockcroft JR, Sprecher DL, Wilkinson IB. Inhibition of p38 mitogen-activated protein kinase improves nitric oxide-mediated vasodilatation and reduces inflammation in hypercholesterolemia. Circulation. 2011;123(5):515–23.

    Article  CAS  PubMed  Google Scholar 

  60. MacNee W, Allan RJ, Jones I, De Salvo MC, Tan LF. Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax. 2013;68(8):738–45.

    Article  PubMed  Google Scholar 

  61. Cohen SB, Cheng TT, Chindalore V, Damjanov N, Burgos-Vargas R, Delora P, Zimany K, Travers H, Caulfield JP. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum. 2009;60(2):335–44.

    Article  CAS  PubMed  Google Scholar 

  62. Genovese MC, Cohen SB, Wofsy D, Weinblatt ME, Firestein GS, Brahn E, Strand V, Baker DG, Tong SE. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J Rheumatol. 2011;38(5):846–54.

    Article  CAS  PubMed  Google Scholar 

  63. Sokol L, Cripe L, Kantarjian H, Sekeres MA, Parmar S, Greenberg P, Goldberg SL, Bhushan V, Shammo J, Hohl R, Verma A, Garcia-Manero G, Li YP, Lowe A, Zhu J, List AF. Randomized, dose-escalation study of the p38α MAPK inhibitor SCIO-469 in patients with myelodysplastic syndrome. Leukemia. 2013;4:977–80.

    Article  Google Scholar 

  64. Tong SE, Daniels SE, Black P, Chang S, Protter A, Desjardins PJ. Novel p38α mitogen-activated protein kinase inhibitor shows analgesic efficacy in acute postsurgical dental pain. J Clin Pharmacol. 2012;52(5):717–28.

    Article  CAS  PubMed  Google Scholar 

  65. Damjanov N, Kauffman RS, Spencer-Green GT. Efficacy, pharmacodynamica and safety of VX-702, a novel p38 MAPK inhibitor in rheumatoid arthritis: results of two randomised, double-blind placebo-controlled clinical studies. Arthritis Rheum. 2009;60:1232–41.

    Article  PubMed  Google Scholar 

  66. Yang S, Lukey P, Beerahee M, Hoke F. Population pharmacokinetics of losmapimod in healthy subjects and patients with rheumatoid arthritis and chronic obstructive pulmonary diseases. Clin Pharmacokinet. 2013;52(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  67. Barbour AM, Sarov-Blat L, Cai G, Fossler MJ, Sprecher DL, Graggber J, et al. Safety, tolerability, pharmacokinetics, an pharmacodynamics of losmapimod following a single intravenous or oral dose in healthy volunteers. Br J Clin Pharmacol. 2013;76(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  68. Yang S, Beerahee M. Losmapimod concentration-QT relationship in healthy volunteers: meta-analysis of data from six clinical trials. Eur J Clin Pharmacol. 2013;69(6):1261–7.

    Article  CAS  PubMed  Google Scholar 

  69. Sarov-Blat L, Morgan JM, Fernandez P, James R, Fang Z, Hurle MR, Baidoo C, Willette RN, Lepore JJ, Jensen SE, Sprecher DL. Inhibition of p38 mitogen-activated protein kinase reduces inflammation after coronary vascular injury in humans. Arterioscler Thromb Vasc Biol. 2010;30(11):2256–63.

    Article  CAS  PubMed  Google Scholar 

  70. Elkhawad M, Rudd JH, Sarov-Blat L, Cai G, Wells R, Davies CL, et al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc Imaging. 2012;5(9):911–22.

    Article  PubMed  Google Scholar 

  71. Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnström P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL. Imaging atherosclerotic plaque inflammation with 18FDG-PET. Circulation. 2002;105:2708–11.

    Google Scholar 

  72. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, Yates D, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.

    Article  PubMed  Google Scholar 

  73. Rosito GA, Massaro JM, Hoffmann U, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117:605–13.

    Article  PubMed  Google Scholar 

  74. Christen T, Sheikine Y, Rocha VZ, et al. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging. 2010;3(8):843–51.

    Google Scholar 

  75. Melloni C, Sprecher DL, Sarov-Blat L, Patel MR, Heitner JF, Hamm CW, Aylward P, et al. The study of LoSmapimod treatment on inflammation and InfarCtSizE (SOLSTICE): design and rationale. Am Heart J. 2012;164(5):646–53.

    Article  CAS  PubMed  Google Scholar 

  76. Newby LK, Sarov-Blat L, Melloni C, Patel MR, Heitner JF, Hamm CW, Aylward P, et al. Safety and efficacy of losmapimod in non-ST-segment elevation acute myocardial infarction: results of the SOLSTICE phase 2 randomized trial. Late-breaking clinical trial abstracts. Circulation. 2012;126(23):2787–8.

    Google Scholar 

  77. Efficacy study of p38 kinase inhibitor to treat patients with atherosclerosis. NCT identifier: NCT00570752. http://www.clinicaltrials.gov.

  78. Evaluation of losmapimod in Chronic Obstructive Pulmonary Disease (COPD) stratified by fibrinogen, (‘EVOLUTION’). A phase 2a randomised placebo-controlled double-blind study. http://www.clinicaltrials.gov, search term: ‘p38 MAPK inhibitor’.

  79. Müllerova H, Agusti A, Erqou S, Mapel DW. Cardiovascular comorbidity in COPD: systematic literature review. Chest. 2013;144(4):1163–78.

    Article  PubMed  Google Scholar 

  80. Man SF, Van Eeden S, Sin DD. Vascular risk in chronic obstructive pulmonary disease: role of inflammation and other mediators. Can J Cardiol. 2012;28(6):653–61.

    Article  PubMed  Google Scholar 

  81. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20.

    Google Scholar 

  82. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med. 1993;118(12):956–63.

    Article  CAS  PubMed  Google Scholar 

  83. del Rincon ID, Williams K, Stern MP, Freeman GL, Escalante A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001;44:2737–45.

    Article  PubMed  Google Scholar 

  84. Mäki-Petäjä KM, Hall FC, Booth AD, Wallace SM, Yasmin, Bearcroft PW, Harish S, Furlong A, McEniery CM, Brown J, Wilkinson IB. Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-alpha therapy. Circulation. 2006;114(11):1185–92.

  85. Mäki-Petäjä KM, Elkhawad M, Cheriyan J, Joshi FR, Ostör AJ, Hall FC, et al. Anti-tumor necrosis factor-α therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation. 2012;126(21):2473–80.

    Article  PubMed  Google Scholar 

  86. Salgado E, Maneiro JR, Carmona L, Gomez-Reino JJ. Safety profile of protein kinase inhibitors in rheumatoid arthritis: systematic review and meta-analysis. Ann Rheum Dis. 2013 (Epub ahead of print).

Download references

Acknowledgments

JC is employed by Cambridge University Hospitals NHS Trust but is seconded to GSK for 50% of the time to conduct clinical trials (including those reviewed in this review). However, JC does not have any shares in GSK and does not receive any dividends, bonuses or personal grants from GSK. PRG owns stocks in AZ and GSK as part of a portfolio account that is managed by a third party. IBW has received grant support from GSK and the technology strategy board to work on p38 MAP kinase inhibitors. MF is in receipt of a GSK imaging fellowship. KMMP has no potential conflicts of interest that might be relevant to the content of this review. All the authors acknowledge the support received by the NIHR Biomedical Research Centre at Cambridge University Hospitals NHS Foundation Trust and the Cambridge Clinical Trials Unit. IBW and KMMP also acknowledge support from the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Cheriyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisk, M., Gajendragadkar, P.R., Mäki-Petäjä, K.M. et al. Therapeutic Potential of p38 MAP Kinase Inhibition in the Management of Cardiovascular Disease. Am J Cardiovasc Drugs 14, 155–165 (2014). https://doi.org/10.1007/s40256-014-0063-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-014-0063-6

Keywords

Navigation