Skip to main content

Advertisement

Log in

Biological functions and role of mitogen-activated protein kinase activated protein kinase 2 (MK2) in inflammatory diseases

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The p38/MK2 pathway regulates a wide range of biological functions, and thus has most been explored as a therapeutic target for inhibition of severe and chronic inflammatory diseases. Till date, several p38 inhibitors with potent anti-inflammatory effects in pre-clinical models have been discovered, but most of them have failed in clinics due to serious systemic toxicity issues.

MK2 is a serine-threonine kinase downstream to p38 and is activated directly through phosphorylation of p38 under stress and inflammatory stimulus. MK2 has been shown to be a direct and essential component in regulating the biosynthesis of pro-inflammatory cytokines. Disruption of MK2 signaling leads to a significant reduction in the level of several pro-inflammatory cytokine production. For these reasons, MK2 has been identified as an alternate molecular target in order to block the pathway with an assumption that this approach would show similar efficacy as that of p38 inhibitors with lesser toxicity concerns.

This review briefly summarizes the molecular structure of MK2 and major biological functions in context with its pharmacological modulation to address various inflammatory diseases. It also discusses the points of advantages over p38 inhibition along with recent update in the development of small molecule MK2 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaestel M, Mengel A, Bothe U, Asadullah K. Protein kinases as small molecule inhibitor targets in inflammation. Curr Med Chem 2007;14:2214–34.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003;2(9):717–26.

    Article  CAS  PubMed  Google Scholar 

  3. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 2000;47:185–201.

    Article  CAS  PubMed  Google Scholar 

  4. Mittelstadt PR, Salvador JM, Fornace Jr. AJ, Ashwell JD. Activating p38 MAPK — new tricks for an old kinase. Cell Cycle 2005;4(9):1189–92.

    Article  CAS  PubMed  Google Scholar 

  5. Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 2004;4(4):372–7.

    Article  CAS  PubMed  Google Scholar 

  6. Dominguez C, Powers DA, Tamayo N. p38 MAP kinase inhibitors: many are made, but few are chosen. Curr Opin Drug Discov Dev 2005;8:421–30.

    CAS  Google Scholar 

  7. Zhang J, Shen B, Lin A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci 2007;28(6):286–95.

    Article  PubMed  CAS  Google Scholar 

  8. Hegen M, Gaestel M, Nickerson-Nutter CL, Lin LL, Telliez JB. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J Immunol 2006;177:1913–7.

    Article  CAS  PubMed  Google Scholar 

  9. Kang JS, Kim HM, Choi IY, Han S-B, Yoon YD, Lee H, et al. DBM1285 suppresses tumor necrosis factor production by blocking p38 mitogen-activated protein kinase/mitogen-activated protein kinase-activated protein kinase 2 signaling pathway. J Pharmacol Exp Ther 2010;334:657–64.

    Article  CAS  PubMed  Google Scholar 

  10. Lee JC, Kassis S, Kumar S, Badger A, Adams JL. p38 mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol Ther 1999;82(2–3):389–97.

    Article  CAS  PubMed  Google Scholar 

  11. Revesz L, Blum E, Padova FED. Novel p38 inhibitors with potent oral efficacy in several models of rheumatoid arthritis. Bioorg Med Chem Lett 2004;4(13):3595–9.

    Article  CAS  Google Scholar 

  12. Broom OJ, Widjaya B, Troelsen J, Olsen J, Nielsen OH. Mitogen activated protein kinases: a role in inflammatory bowel diseases? Clin Exp Immunol 2009;158:272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moens U, Kostenko S, Sveinbjornsson B. The role of mitogen activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes 2013;4:101–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chopra P, Kanoje V, Semwal A, Ray A. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opin Investig Drugs 2008;17(10):1411–25.

    Article  CAS  PubMed  Google Scholar 

  15. Moretto N, Bertolini S, Iadicicco C, Marchini G, Kaur M, Volpi G, et al. Cigarette smoke and its component acrolein augment IL-8/CXCL8 mRNA stability via p38 MAPK/MK2 signaling in human pulmonary cells. Am J Physiol Lung Cell Mol Physiol 2012;303:L929–38.

    Article  CAS  PubMed  Google Scholar 

  16. Dambach DM. Potential adverse effects associated with inhibition of p38 α/β MAP kinases. Curr Top Med Chem 2005;5(10):929–39.

    Article  CAS  PubMed  Google Scholar 

  17. Duraisamy S, Bajpai M, Bughani U, Dastidar SG, Ray A, Chopra P. MK2: a novel molecular target for anti-inflammatory therapy. Expert Opin Ther Targets 2008;12(8):921–36.

    Article  CAS  PubMed  Google Scholar 

  18. Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA. Deficiency of the stress kinase p38 results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme deficient embryonic stem cells. J Exp Med 2000;191:859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiore M, Forli S, Manetti F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J Med Chem 2016;59(8):3609–34.

    Article  CAS  PubMed  Google Scholar 

  20. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 2006;26:2399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ronkina N, Menon MB, Schwermann J, Tiedje C, Hitti E, Kotlyarov A, et al. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol 2010;80:1915–20.

    Article  CAS  PubMed  Google Scholar 

  22. White A, Pargellis CA, Studts JM, Werneburg BG, Farmer BT. Molecular basis of MAPK-activated protein kinase 2:p38 assembly. Proc Natl Acad Sci U S A 2007;104:6353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meng W, Swenson LL, Fitzgibbon MJ, Hayakawa K, Ter Haar E, Behrens AE, et al. Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J Biol Chem 2002;277:37401–5.

    Article  CAS  PubMed  Google Scholar 

  24. Neininger A, Thielemann H, Gaestel M. FRET-based detection of different conformations of MK2. EMBO Rep 2001;2:703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 1998;8:1049–57.

    Article  CAS  PubMed  Google Scholar 

  26. Natesan S, Subramaniam R, Bergeron C, Balaz S. Binding affinity prediction for ligands and receptors forming tautomers and ionization species: inhibition of mitogen-activated protein kinase activated protein kinase 2 (MK2). J Med Chem 2012;55:2035–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Underwood KW, Parris KD, Federico E, Mosyak L, Czerwinski RM, Shane T, et al. Catalytically active MAPKAP kinase 2 structures in complex with staurosporine and ADP reveal differences with the autoinhibited enzyme. Structure 2003;11:627–36.

    Article  CAS  PubMed  Google Scholar 

  28. Zu YL, Ai T, Huang CK. Characterization of an autoinhibitory domain in human mitogen-activated protein kinase activated protein kinase 2. J Biol Chem 1995;270:202–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, et al. Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J 1995;14:5920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kotlyarov A, Yannoni Y, Fritz S, Laab K, Telliez J-B, Pitman D, et al. Distinct cellular functions of MK2. Mol Cell Biol 2002;22(13):4827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ronkina N, Kotlyarov A, Gaestel M. MK2 and MK3 — a pair of isoenzymes? Front Biosci 2008;13:5511–21.

    Article  CAS  PubMed  Google Scholar 

  32. Gaestel M. What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition. Biol Chem 2013;394:1301–15.

    Article  CAS  PubMed  Google Scholar 

  33. Ronkina N, Kotlyarov A, Dittrich-Breiholz O, Kracht M, Hitti E, Milarski K, et al. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol Cell Biol 2007;27:170–81.

    Article  CAS  PubMed  Google Scholar 

  34. Haar Et, Prabakhar P, Liu X, Lepre C. Crystal structure of the p38α-MAPKAP kinase 2 heterodimer. J Biol Chem 2007;282:9733–9.

    Article  PubMed  Google Scholar 

  35. Anderson DR, Meyers MJ, Kurumbail RG, Caspers N, Poda GI, Long SA, et al. Benzothiophene inhibitors of MK2. Part 1: structure-activity relationships, assessment of selectivity and cellular potency. Bioorg Med Chem Lett 2009;19:4878–81.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson DR, Meyers MJ, Vernier WF, Mahoney MW, Kurumbail RG, Caspers N, et al. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). J Med Chem 2007;50:2647–54.

    Article  CAS  PubMed  Google Scholar 

  37. Mourey RJ, Burnette BL, Brustkern SJ, Daniels JS, Hirsch JL, Hood WF, et al. A benzothiophene inhibitor of mitogen-activated protein kinase-activated protein kinase 2 inhibits tumor necrosis factor a production and has oral anti-inflammatory efficacy in acute and chronic models of inflammation. J Pharmacol Exp Ther 2010;333:797–807.

    Article  CAS  PubMed  Google Scholar 

  38. Lee MR, Dominguez C. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38 protein. Curr Med Chem 2005;12:2979–94.

    Article  CAS  PubMed  Google Scholar 

  39. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, et al. MK2-induced tristetraprolin: 14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 2004;23:1313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thuraisingam T, Xu YZ, Moisan J. Distinct role of MAPKAPK-2 in the regulation of TNF gene expression by Toll-like receptor 7 and 9 ligands. Mol Immunol 2007;44(14):3482–91.

    Article  CAS  PubMed  Google Scholar 

  41. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75:50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clement SL, Scheckel C, Stoecklin G, Andersen JL. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 2011;31(2):256–66.

    Article  CAS  PubMed  Google Scholar 

  43. Gaestel M. MAPKAP kinases — MKs — two’s company, three’s a crowd. Nat Rev Mol Cell Biol 2006;7:120–30.

    Article  CAS  PubMed  Google Scholar 

  44. Kotlyarov A, Gaestel M. Is MK2 (mitogen-activated protein kinase-activated protein kinase 2) the key for understanding post-transcriptional regulation of gene expression? Biochem Soc Trans 2002;30(6):959–63.

    Article  CAS  PubMed  Google Scholar 

  45. Argiriadi MA, Sousa S, Banach D, Marcotte D, Xiang T, Tomlinson MJ, et al. Rational mutagenesis to support structure-based drug design: MAPKAP kinase 2 as a case study. BMC Struct Biol 2009;9:16–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lehner MD, Schwoebel F, Kotlyarov A. Mitogen-activated protein kinase-activated protein kinase 2-deficient mice show increased susceptibility to Listeria monocytogenes infection. J Immunol 2002;168(9):4667–73.

    Article  CAS  PubMed  Google Scholar 

  47. Ehlting C, Ronkina N, Bohmer O, Albrecht U, Bode KA, Lang KS, et al. Distinct functions of the mitogen-activated protein kinase-activated protein (MAPKAP) kinases MK2 and MK3. J Biol Chem 2011;286(27):24113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 2009;8:480–99.

    Article  CAS  PubMed  Google Scholar 

  49. Gais P, Tiedje C, Altmayr F, Gaestel M, Weighardt H, Holzmann B. TRIF signaling stimulates translation of TNF-a mRNA via prolonged activation of MK2. J Immunol 2010;184:5842–8.

    Article  CAS  PubMed  Google Scholar 

  50. Trentham DE, Townes AS, Kang AH. Autoimmunity type II collagen and experimental model of arthritis. J Exp Med 1977;146:857–68.

    Article  CAS  PubMed  Google Scholar 

  51. Jones SW, Brockbank SM, Clements KM, Good NL, Campbell D, Read SJ, et al. MK2 modulates key biological pathways associated with osteoarthritis disease pathology. Osteoarthr Cartil 2009;17:124–31.

    Article  CAS  PubMed  Google Scholar 

  52. Gorska MM, Liang Q, Stafford SJ, Goplen N, Dharajiya N, Guo L, et al. MK2 controls the level of negative feedback in the NF-kB pathway and is essential for vascular permeability and airway inflammation. J Exp Med 2007;204:1637–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li YY, Yuece B, Cao HM, Lin HX, Lv S, Chen JC, et al. Inhibition of p38/MK2 signaling pathway improves the anti-inflammatory effect of WIN55 on mouse experimental colitis. Lab Invest 2013;93:322–33.

    Article  CAS  PubMed  Google Scholar 

  54. Johansen C, Funding AT, Otkjaer K, Kragballe K, Jensen UB, Medsen M, et al. Protein expression of TNFa in psoriatic skin is regulated at a post-transcriptional level by MAPKAPK-2. J Immunol 2006;176:1431–8.

    Article  CAS  PubMed  Google Scholar 

  55. Funding AT, Johansen C, Gaestel M, Bibby BM, Lilleholt LL, Kragballe K, et al. Reduced oxazolone-induced skin inflammation in MAPKAPK-2 knockout mice. J Investig Dermatol 2009;129:891–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fyhrquist N, Matikainen S, Lauerma A. MK2 signaling: lessons on tissue specificity in modulation of inflammation. J Investig Dermatol 2010;130:342–4.

    Article  CAS  PubMed  Google Scholar 

  57. Schottelius AJ, Zugel U, Docke W, Zollner TM, Rose L, Mengel A, et al. The role of mitogen activated protein kinase-activated protein kinase-2 in the p38/TNF-a pathway of systemic and cutaneous inflammation. J Investig Dermatol 2010;130:481–91.

    Article  CAS  PubMed  Google Scholar 

  58. Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 2006;281:23658–67.

    Article  CAS  PubMed  Google Scholar 

  59. Gurgis FMS, Ziaziaris W, Munoz L. Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Mol Pharmacol 2014;85:345–56.

    Article  PubMed  CAS  Google Scholar 

  60. Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Eldik LJV. Microglial p38a MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Ab). J Neuroinflamm 2011;8:79.

    Article  CAS  Google Scholar 

  61. Thomas T, Hitti E, Kotlyarov A, Potschka H, Gaestel M. MAP-kinase activated protein kinase 2 expression and activity is induced after neuronal depolarization. Eur J Neurosci 2008;28:642–54.

    Article  PubMed  Google Scholar 

  62. Goldstein DM, Gabriel T. Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development. Curr Top Med Chem 2005;5:1017–29.

    Article  CAS  PubMed  Google Scholar 

  63. Hammaker D, Firestein GS. “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis 2010;69(S1):i77–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheung PC, Campbell DG, Nebreda AR, Cohen P. Feedback control of the protein kinase TAK1 by SAPK2a/p38a. EMBO J 2003;22:5793–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Muniyappa H, Das KC. Activation of c-Jun N-Terminal Kinase (JNK) by widely used specific p38 MAPK inhibitor SB202190 and SB203580: a MLK-3 MKK7-dependent mechanism. Cell Signal 2008;20(4):675–83.

    Article  CAS  PubMed  Google Scholar 

  66. Trempolec N, Dave-Coll N, Nebreda AR. SnapShot: p38 MAPK substrates. Cell 2013;152:924.

    Article  CAS  PubMed  Google Scholar 

  67. Ananieva O, Darragh J, Johansen C, Carr JM, McIlrath J, Park JM, et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat Immunol 2008;9(9):1028–36.

    Article  CAS  PubMed  Google Scholar 

  68. Mudgett JS, Ding J, Guh-Siesel L. Essential role for p38 α mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 2000;97(19):10454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clark AR, Dean JL. The p38MAPK pathway in rheumatoid arthritis: a sideway look. Open Rheumatol J 2012;6:209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, et al. Aminocyanopyridine inhibitors of mitogen activated protein kinase activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 2005;15:1587–90.

    Article  CAS  PubMed  Google Scholar 

  71. Anderson DR, Meyers MJ, Kurumbail RG, Caspers N, Poda GI, Long SA, et al. Benzothiophene inhibitors of MK2. Part 1: improvements in kinase selectivity and cell potency. Bioorg Med Chem Lett 2009;19:4882–4.

    Article  CAS  PubMed  Google Scholar 

  72. Barf T, Kaptein A, de Wilde S, van der Heijden R, van Someren R, Demont D, et al. Structure-based lead identification of ATP-competitive MK2 inhibitors. Bioorg Med Chem Lett 2011;21:3818–22.

    Article  CAS  PubMed  Google Scholar 

  73. Oubrie A, Kaptein A, de Zwart E, Hoogenboom N, Goorden R, van de Kar B, et al. Novel ATP competitive MK2 inhibitors with potent biochemical and cell-based activity throughout the series. Bioorg Med Chem Lett 2012;22:613–8.

    Article  CAS  PubMed  Google Scholar 

  74. Trujillo JI, Meyers MJ, Anderson DR, Hegde S, Mahoney MW, Vernier WF, et al. Novel tetrahydro-β-carboline-1-carboxylic acids as inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 2007;17:4657–63.

    Article  CAS  PubMed  Google Scholar 

  75. Schlapbach A, Huppertz C. Low molecular-weight MK2 inhibitors: a tough nut to crack!. Future Med Chem 2009;1:1243–57.

    Article  CAS  PubMed  Google Scholar 

  76. Hillig RC, Eberspaecher U, Monteclaro F, Huber M, Nguyen D, Mengel A, et al. Structural basis for a high affinity inhibitor bound to protein kinase MK2. J Mol Biol 2007;369:735–45.

    Article  CAS  PubMed  Google Scholar 

  77. Shankar S, Handa R. Biological agents in rheumatoid arthritis. J Postgrad Med 2004;50(4):293–9.

    CAS  PubMed  Google Scholar 

  78. Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 2004;3:801–8.

    Article  CAS  PubMed  Google Scholar 

  79. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011;10:507–19.

    Article  CAS  PubMed  Google Scholar 

  80. Qin J, Dhondi P, Huang X, Aslanian R, Fossetta J, Tian F, et al. Discovery of a potent dihydrooxadiazole series of non-ATP competitive MK2 (MAPKAPK2) inhibitors. ACS Med Chem Lett 2012;3:100–5.

    Article  CAS  PubMed  Google Scholar 

  81. Xiao D, Zhu X, Sofolarides M, Degrado S, Shao N, Rao A, et al. Discovery of a novel series of potent MK2 non-ATP competitive inhibitors using 1,2-substituted azoles as cis-amide isosteres. Bioorg Med Chem Lett 2014;24:3609–13.

    Article  CAS  PubMed  Google Scholar 

  82. Huang X, Zhu X, Chen X, Zhou W, Xiao D, Degrado S, et al. A three-step protocol for lead optimization: quick identification of key conformational features and functional groups in the SAR studies of non-ATP competitive MK2 (MAPKAPK2) inhibitors. Bioorg Med Chem Lett 2012;22:65–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunanda Ghosh Dastidar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Najmi, A.K. & Dastidar, S.G. Biological functions and role of mitogen-activated protein kinase activated protein kinase 2 (MK2) in inflammatory diseases. Pharmacol. Rep 69, 746–756 (2017). https://doi.org/10.1016/j.pharep.2017.03.023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.03.023

Keywords

Navigation