Skip to main content
Log in

Recent Advances in Mechanism of AIE Mechanochromic Materials

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Organic mechanochromic materials(also known as piezochromic materials), whose color or emission changes under mechanical force, have attracted great interest owing to their potential applications in pressure sensors, rewritable materials, optical storage, and security ink. Organic mechanochromic materials with aggregation-induced emission(AIE) features have better development prospects and research value owing to their excellent optical properties. To date, mechanochromism has mostly been realized by means of mechanical grinding. Nevertheless, the magnitude of the grinding force is usually uncontrollable and its direction is anisotropic, making it awkward to study the mechanism of mechanochromic materials. On the contrary, hydrostatic pressure, whose magnitude and direction are controllable, is a more valid and governable method to investigate the mechanism of mechanochromic materials, which can help us to construct a meaningful structure-property relationship and understand the latent origin of the mechanochromism. Furthermore, it is conducive to developing other mechanochromic material systems with desired chemical and physical properties. In this review, we focus on the recent progress in the mechanism of organic mechanochromic materials with AIE features under hydrostatic pressure. Four types of mechanisms are included: intermolecular interaction change, intramolecular conformation change, transformation from locally excited state to intramolecular charge-transfer state, and intra- and inter-molecular effects induced by hydrostatic pressure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sagara Y., Kato T., Nat. Chem., 2009, 1(8), 605

    Article  CAS  Google Scholar 

  2. Gong Y., Chen G., Peng Q., Yuan W.Z., Xie Y., Li S., Zhang Y., Tang B. Z., Adv. Mater., 2015, 27(40), 6195

    Article  CAS  Google Scholar 

  3. Lai Y., Zhu T., Geng T., Zheng S., Yang T., Zhao Z., Xiao G., Zou B., Yuan W. Z., Small, 2020, 16(49), 2005035

    Article  CAS  Google Scholar 

  4. Zhelev Z., Ohba H., Bakalova R., J. Am. Chem. Soc., 2006, 128(19), 6324

    Article  CAS  Google Scholar 

  5. Bakalova R., Zhelev Z., Aoki I., Ohba H., Imai Y., Kanno I., Anal. Chem., 2006, 78(16), 5925

    Article  CAS  Google Scholar 

  6. Wang M., Zhang G., Zhang D., Zhu D., Tang B. Z., J. Mater. Chem., 2010, 20(10), 1858

    Article  CAS  Google Scholar 

  7. Ding D., Li K., Liu B., Tang B. Z., Acc. Chem. Res., 2013, 46(11), 2441

    Article  CAS  Google Scholar 

  8. Luo J. D., Xie Z. L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chem. Commun., 2001, 18, 1740

    Article  Google Scholar 

  9. An B. K., Lee D. S., Lee J. S., Park Y. S., Song H. S., Park S. Y., J. Am. Chem. Soc., 2004, 126(33), 10232

    Article  CAS  Google Scholar 

  10. Chen J. W., Xu B., Ouyang X. Y., Tang B. Z., Cao Y., J. Phys. Chem. A, 2004, 108(37), 7522

    Article  CAS  Google Scholar 

  11. Wang F., Han M. Y., Mya K. Y., Wang Y. B., Lai Y. H., J. Am. Chem. Soc., 2005, 127(29), 10350

    Article  CAS  Google Scholar 

  12. Xu B., Chi Z., Li H., Zhang X., Li X., Liu S., Zhang Y., Xu J., J. Phys. Chem. C, 2011, 115(35), 17574

    Article  CAS  Google Scholar 

  13. Xu B., Chi Z., Li X., Li H., Zhou W., Zhang X., Wang C., Zhang Y., Liu S., Xu J., J. Fluoresc., 2011, 21(1), 433

    Article  CAS  Google Scholar 

  14. He J., Xu B., Chen F., Xia H., Li K., Ye L., Tian W. J., J. Phys. Chem. C, 2009, 113(22), 9892

    Article  CAS  Google Scholar 

  15. Liu Y., Ma S., Xu B., Tian W., Faraday Discuss., 2017, 196, 219

    Article  CAS  Google Scholar 

  16. Ma S., Ma L., Han W., Jiang S., Xu B., Tian W., Sci China Chem., 2018, 48(7), 683

    Google Scholar 

  17. Wang L., Ye K., Zhang H., Chinese. Chem. Lett., 2016, 27(8), 1367

    Article  CAS  Google Scholar 

  18. Dong Y., Xu B., Zhang J., Tan X., Wang L., Chen J., Lv H., Wen S., Li B., Ye L., Zou B., Tian W. J., Angew. Chem. Int. Ed., 2012, 51(43), 10782

    Article  CAS  Google Scholar 

  19. Dong Y., Zhang J., Tan X., Wang L., Chen J., Li B., Ye L., Xu B., Zou B., Tian W., J. Mater. Chem. C, 2013, 1(45), 7554

    Article  CAS  Google Scholar 

  20. Nagura K., Saito S., Yusa H., Yamawaki H., Fujihisa H., Sato H., Shimoikeda Y., Yamaguchi S., J. Am. Chem. Soc., 2013, 135(28), 10322

    Article  CAS  Google Scholar 

  21. Ouyang M., Zhan L., Lv X., Cao F., Li W., Zhang Y., Wang K., Zhang C., Rsc. Advances, 2016, 6(2), 1188

    Article  CAS  Google Scholar 

  22. Shao B., Jin R., Li A., Liu Y., Li B., Xu S., Xu W., Xu B., Tian W., J. Mater. Chem. C, 2019, 7(11), 3263

    Article  CAS  Google Scholar 

  23. Liu Y., Li A., Xu S., Xu W., Liu Y., Tian W., Xu B., Angew. Chem. Int. Ed., 2020, 59(35), 15098

    Article  CAS  Google Scholar 

  24. Qi Q., Zhang J., Xu B., Li B., Zhang S. X., Tian W., J. Phys. Chem. C, 2013, 117(47), 24997

    Article  CAS  Google Scholar 

  25. Yuan H., Wang K., Yang K., Liu B., Zou B., J. Phys. Chem. Lett., 2014, 5(17), 2968

    Article  CAS  Google Scholar 

  26. Zhang Y., Song Q., Wang K., Mao W., Cao F., Sun J., Zhan L., Lv Y., Ma Y., Zou B., Zhang C., J. Mater. Chem. C, 2015, 3(13), 3049

    Article  CAS  Google Scholar 

  27. Xu Y., Wang K., Zhang Y., Xie Z., Zou B., Ma Y., J. Mater. Chem. C, 2016, 4(6), 1257

    Article  CAS  Google Scholar 

  28. Qi Q., Qian J., Tan X., Zhang J., Wang L., Xu B., Zou B., Tian W., Adv. Funct. Mater., 2015, 25(26), 4005

    Article  CAS  Google Scholar 

  29. Zhang Y., Wang K., Zhuang G., Xie Z., Zhang C., Cao F., Pan G., Chen H., Zou B., Ma Y., Chem-Eur J., 2015, 21(6), 2474

    Article  CAS  Google Scholar 

  30. Liu Y., Zeng Q., Zou B., Liu Y., Xu B., Tian W., Angew. Chem. Int. Ed., 2018, 57(48), 15670

    Article  CAS  Google Scholar 

  31. Jiang S., Wang J., Qi Q., Qian J., Xu B., Li F., Zhou Q., Tian W., Chem. Commun., 2019, 55(26), 3749

    Article  CAS  Google Scholar 

  32. Wang X., Liu Q., Yan H., Liu Z., Yao M., Zhang Q., Gong S., He W., Chem. Commun., 2015, 51(35), 7497

    Article  CAS  Google Scholar 

  33. Liu L., Su X., Yu Q., Guo H., Wang K., Yu B., Lin M., Zou B., Liu Y., Zhang S. X., J. Phys. Chem. C, 2019, 123(41), 25366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China(Nos. 21835001, 52073116, 51773080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leijing Liu or Wenjing Tian.

Additional information

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, L., Xu, B. et al. Recent Advances in Mechanism of AIE Mechanochromic Materials. Chem. Res. Chin. Univ. 37, 100–109 (2021). https://doi.org/10.1007/s40242-021-0431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-0431-0

Keywords

Navigation