Skip to main content

Advertisement

Log in

Agglomerated Pd catalysts and their applications in hydrogen production from formic acid decomposition at room temperature

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Agglomerated Pd catalysts with the nano-porous structure were simply prepared by one-step reduction reaction without using any stabilizer. The Pd catalysts show a high catalytic activity for the decomposition of formic acid at room temperature. Among all the Pd catalysts tested, the PdMg catalyst exhibits the highest catalytic activity. Moreover, the breakthrough of the advanced catalysts is that the above agglomerated Pd catalysts can be easily separated from the liquid system to control the catalytic reaction at any time, which may further promote the practical application of formic acid as a H2 storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter C. J., Int. J. Hydrogen Energy, 2009, 34, S1

    Article  CAS  Google Scholar 

  2. Amoo L. M., Fagbenle R. L., Int. J. Hydrogen Energy, 2014, 39, 12409

    Article  CAS  Google Scholar 

  3. Albert B., Björn L., Henrik J., Matthias B., Chem. Sus. Chem., 2008, 1, 751

    Article  Google Scholar 

  4. Björn L., Albert B., Henrik J., Matthias B., Angew. Chem. Int. Ed., 2008, 47, 3962

    Article  Google Scholar 

  5. Henrik J., Albert B., Francesca C., Björn L., James R. N., Serafino G., Matthias B., Tetrahedron Lett., 2009, 50, 1603

    Article  Google Scholar 

  6. Björn L., Albert B., Henrik J., James R. N., Wolfgang B., Matthias B., Chem. Commun., 2009, (28), 4185

    Google Scholar 

  7. Céline F., Paul J. D., Gábor L., Angew. Chem. Int. Ed., 2008, 47, 3966

    Article  Google Scholar 

  8. Céline F., Ning Y., Paul J. D., Gábor L., Chem. Eur. J., 2009, 15, 3752

    Article  Google Scholar 

  9. Miklos C., Alain G., Robert M., Ralf H., Prakash G. K. S., George A. O., Chem. Sus. Chem., 2011, 4, 1241

    Article  Google Scholar 

  10. Karaked T., Li T., Simon J., Chun W. A. C., Kai M. K. Y., Paul A. J. B., Emmanuelle A. M., Georg S. D. W., Shik C. E. T., Nat. Nanotech., 2011, 6, 302

    Article  Google Scholar 

  11. Zhou X. C., Huang Y. J., Xing W., Liu C. P., Liao J. H., Lu T. H., Chem. Commun., 2008, (30), 3540

    Article  Google Scholar 

  12. Zhou X. Z., Huang Y. J., Liu C. P., Liao J. H., Lu T. H., Xing W., Chem. Sus. Chem., 2010, 3, 1379

    Article  CAS  Google Scholar 

  13. Ping Y., Yan J. M., Wang Z. L., Wang H. L., Jiang Q., J. Mater. Chem. A, 2013, 1, 12188

    Article  CAS  Google Scholar 

  14. Dai H. M., Cao N., Yang L., Su J., Luo W., Cheng G. Z., J. Mater. Chem. A, 2014, 2, 11060

    Article  CAS  Google Scholar 

  15. Metin O., Sun X., Sun S., Nanoscale, 2013, 5, 910

    Article  CAS  Google Scholar 

  16. Kohsuke M., Masahiro D., Hiromi Y., ACS Catal., 2013, 3, 1114

    Article  Google Scholar 

  17. Yang L., Hua X., Sun J., Luo W., Chen S. L., Cheng G. Z., Appl. Catal. B, 2015, 168, 423

    Article  Google Scholar 

  18. Kaustab M., Debaleena B., Subrata D., Int. J. Hydrogen Energy, 2015, 40, 4786

    Article  Google Scholar 

  19. Dai H. G., Cao N., Yang L., Su J., Luo W., Cheng G. Z., J. Mater. Chem. A, 2014, 2, 11060

    Article  CAS  Google Scholar 

  20. Ahmet B., Mehmet Y., Yasar K., Zafer S., Hilal K., Murat K., Mehmet G., Emrah O., Mehmet Z., ACS Catal., 2015, 5, 6099

    Article  Google Scholar 

  21. Masashi H., Hisahiro E., Takeshi D., Masaharu T., J. Mater. Chem. A, 2015, 3, 4453

    Article  Google Scholar 

  22. Gazsi A., Bánsági T., Solymosi F., J. Phys. Chem. C, 2011, 115, 15459

    Article  CAS  Google Scholar 

  23. Manuel O., Enrique I., Angew. Chem. Int. Ed., 2009, 48, 4800

    Article  Google Scholar 

  24. Mahendra Y., Tomoki A., Nobuko T., Xu Q., J. Mater. Chem., 2012, 22, 12582

    Article  Google Scholar 

  25. Bi Q. Y., Du X. L, Liu Y. M., Cao Y., He H. Y., Fan K. N., J. Am. Chem. Soc., 2012, 134, 8926

    Article  CAS  Google Scholar 

  26. Wang Z. L., Yan J. M., Wang H. L., Ping Y., Jiang Q., Sci. Rep., 2012, 2, 598

    Google Scholar 

  27. Hu C. Q., Ting S. W., Jenkin T., Chan K. Y., Int. J. Hydrogen Energy, 2012, 37, 6372

    Article  CAS  Google Scholar 

  28. Wang Z. L., Yan J. W., Wang H. L., Ping Y., Qing J., J. Mater. Chem. A, 2013, 1, 12721

    Article  CAS  Google Scholar 

  29. Yu W. Y., Mullen G. M., Flaherty D. W., Mullins C. B., J. Am. Chem. Soc., 2014, 136, 11070

    Article  CAS  Google Scholar 

  30. Wu S., Yang F., Wang H., Chen R., Sun P., Chen T. H., Chem. Commun., 2015, 51, 10887

    Article  CAS  Google Scholar 

  31. Wu S., Yang F., Sun P., Chen T. H., RSC Adv., 2014, 4, 44500

    Article  CAS  Google Scholar 

  32. Wang X., Qi G. W., Tan C. H., Li Y. P., Guo J., Pang X. J., Zhang S. Y., Int. J. Hydrogen Energy, 2014, 39, 837

    Article  CAS  Google Scholar 

  33. Hu L., Zheng B., Lai Z. P., Huang K. W., Int. J. Hydrogen Energy, 2014, 39, 20031

    Article  CAS  Google Scholar 

  34. Hu C. Q., Ting S. W., Chan K. Y., Huang W., Int. J. Hydrogen Energy, 2013, 38, 8720

    Article  CAS  Google Scholar 

  35. Wang Z. L., Ping Y., Yan J. M., Wang H. L., Jiang Q., Int. J. Hydrogen Energy, 2014, 39, 4850

    Article  CAS  Google Scholar 

  36. Mehmet Y., Ahmet B. M. Z., Murat K., Appl. Catal. B-Environ., 2014, 160, 514

    Google Scholar 

  37. Zhang H., Metin O., Su D., Sun S., Angew. Chem., Int. Ed., 2013, 52, 3681

    Article  CAS  Google Scholar 

  38. Liu J., Cao L., Xia Y., Huang W., Li Z. L., Int. J. Electrochem. Sci., 2013, 8, 9435

    CAS  Google Scholar 

  39. Lukaszewski M., Czerwinski A., Thin Solid Films, 2010, 518, 3680

    Article  CAS  Google Scholar 

  40. Cheng N. C., Lv H. F., Wang W., Mu S. C., Pan M., Frank M., J. Power Sources, 2010, 195, 7246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Supported by the Programs Foundation of Scientific Research of Education Department of Hunan Province, China (Nos.14C0381, 15C0464).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lan, L., Wu, C. et al. Agglomerated Pd catalysts and their applications in hydrogen production from formic acid decomposition at room temperature. Chem. Res. Chin. Univ. 32, 272–277 (2016). https://doi.org/10.1007/s40242-016-5331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5331-3

Keywords

Navigation