Skip to main content

Advertisement

Log in

Novel genetic association between obesity, colorectal cancer, and inflammatory bowel disease

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Obesity/overweight is an important risk factor for CRC and IBD. The aim of this study was to investigate the role of common genetic factors and haplotypes associated with obesity, CRC and IBD.

Methods

Significant GWAS variants associated with CRC, IBD or obesity were extracted from the GWAS catalog. The common variants between CRC-IBD, CRC-obesity or IBD-obesity were identified. Finally, the haplotypic structure between these diseases was identified, and SNP function analysis, gene-gene expression, protein-protein interactions, gene survival analysis and pathway analysis were performed with the results.

Results

While the results showed several common variants between CRC and IBD, IBD and obesity, and CRC and obesity identified in previous GWAS, rs3184504 was the only common variant for CRC-IBD-obesity (P ≤ 5E-8). The result also identified a haplotypic block AGCAGT (r2 ≥ 0.8 and D’≥0.08) associated with the common variants of CRC-IBD-obesity. These variants are located on the SH2B3 gene, whose expression level decreases in both colon and rectal cancers (P ≤ 1E-3) and which has protein-protein interaction with inflammation- and cancer-associated genes.

Conclusion

The rs3184504 variant and the novel haplotype AGCAGT co-occurred in CRC, IBD, obesity, and inflammation. This novel haplotype could potentially be used in genetic panels to identify CRC/IBD susceptibility in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. Cancer J Clin. 2023;73(3):233–54.

    Article  Google Scholar 

  2. World Health Organization (WHO). https://www.iarc.who.int/featured-news/colorectal-cancer-awareness-month-2022/. Accessed 25 May 2023

  3. Sninsky JA, Shore BM, Lupu GV, Crockett SD. Risk factors for colorectal polyps and cancer. Gastrointest Endoscop Clin. 2022;32(2):195–213.

    Article  Google Scholar 

  4. Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel Disease. Nature. 2020;578(7796):527–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chang JT. Pathophysiology of inflammatory bowel diseases. N Engl J Med. 2020;383(27):2652–64.

    Article  PubMed  CAS  Google Scholar 

  6. Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech Coloproctol. 2019;23:3–13.

    Article  PubMed  CAS  Google Scholar 

  7. Hudson JL, Barnes EL, Herfarth HH, Isaacs KL, Jain A. Bariatric Surgery is a safe and effective option for patients with inflammatory bowel Diseases: a case series and systematic review of the literature. Inflamm Intestinal Dis. 2019;3(4):173–9.

    Article  Google Scholar 

  8. Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51(D1):D977–85.

    Article  PubMed  CAS  Google Scholar 

  9. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930–4.

    Article  PubMed  CAS  Google Scholar 

  10. Sherry ST, Ward M, Sirotkin K. dbSNP—database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9(8):677–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95.

    Article  PubMed  CAS  Google Scholar 

  12. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using regulomeDB. Genome Res. 2012;22(9):1790–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang Y, Wang D, Miao Y-R, Wu X, Luo H, Cao W, et al. lncRNASNP v3: an updated database for functional variants in long non-coding RNAs. Nucleic Acids Res. 2023;51(D1):D192–8.

    Article  PubMed  CAS  Google Scholar 

  14. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to Disease genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1. 1–1. 3.

  16. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.

    Article  PubMed  CAS  Google Scholar 

  17. Tang G, Cho M, Wang X. OncoDB: an interactive online database for analysis of gene expression and viral Infection in cancer. Nucleic Acids Res. 2022;50(D1):D1334–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hoffmann TJ, Choquet H, Yin J, Banda Y, Kvale MN, Glymour M, et al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics. 2018;210(2):499–515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26–41.

    Article  PubMed  CAS  Google Scholar 

  20. Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, et al. Genome-wide association study of Colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6(1):7138.

    Article  PubMed  Google Scholar 

  21. Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. Novel common genetic susceptibility loci for Colorectal cancer. JNCI: J Natl Cancer Inst. 2019;111(2):146–57.

    Article  PubMed  Google Scholar 

  22. Liu JZ, Van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metabolism. 2020;2(10):1135–48.

    Article  CAS  Google Scholar 

  24. Fabbi M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm. 2017;2017:3958069.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morita Y, Masters EA, Schwarz EM, Muthukrishnan G. Interleukin-27 and its diverse effects on bacterial Infections. Front Immunol. 2021;12: 678515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Helgeland Ø, Vaudel M, Sole-Navais P, Flatley C, Juodakis J, Bacelis J, et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat Metabolism. 2022;4(3):344–58.

    Article  CAS  Google Scholar 

  27. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415–24.

    Article  PubMed  CAS  Google Scholar 

  28. Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75.

    Article  PubMed  CAS  Google Scholar 

  29. Plotnikov D, Williams C, Guggenheim JA. Association between birth weight and refractive error in adulthood: a mendelian randomisation study. Br J Ophthalmol. 2020;104(2):214–9.

    Article  PubMed  Google Scholar 

  30. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brandes N, Linial N, Linial M. Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Sci Rep. 2021;11(1):1–16.

    Article  Google Scholar 

  32. Huang LO, Rauch A, Mazzaferro E, Preuss M, Carobbio S, Bayrak CS, et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metabolism. 2021;3(2):228–43.

    Article  CAS  Google Scholar 

  33. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic Lupus Erythematosus. Nat Genet. 2015;47(12):1457–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pietzner M, Wheeler E, Carrasco-Zanini J, Cortes A, Koprulu M, Wörheide MA, et al. Mapping the proteo-genomic convergence of human Diseases. Science. 2021;374(6569): eabj1541.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen M-H, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182(5):1198–213 (e14).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Gholami.

Ethics declarations

Ethics approval

N/A. 

Patient consent

N/A. 

Competing interests

The author declares no conflict of interest. 

Permission to reproduce material from other sources

N/A. 

Clinical trial registration

N/A.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M. Novel genetic association between obesity, colorectal cancer, and inflammatory bowel disease. J Diabetes Metab Disord (2023). https://doi.org/10.1007/s40200-023-01343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-023-01343-w

Keywords

Navigation