Skip to main content

An Intergenic Variant rs4779584 Between SCG5 and GREM1 Contributes to the Increased Risk of Colorectal Cancer: A Meta-Analysis

  • Chapter
  • First Online:
Novel therapeutic approaches for gastrointestinal malignancies

Abstract

Colorectal cancer (CRC) is very common malignancy all over the world. Adoption of Western diet (red meat and high fat foods) in many countries has increased the incidence of colorectal cancer. There are genetic factors as well as environmental factors contributed to the etiology of CRC. Current meta-analysis is envisioned to investigate the association between rs4779584 variant and risk of CRC. PubMed, Google Scholar, and Embase were used for the collection of publication to retrieve data. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the association between rs4779584 variant and risk of CRC. To determine heterogeneity, Cochrane Q test and I2 statistic were employed. Subgroup analysis and sensitivity analysis were performed to assess between-study heterogeneity. Publication bias was determined through Funnel plots and Egger’s test. Total 14 publications with 26 different studies comprising 25,469 CRC cases and 32,745 controls were finally considered for meta-analysis. Overall, a positive association of rs4779584 polymorphism with CRC risk was found in all genetic models (allelic model: OR = 1.13; 95% CI 1.08–1.18; p = <0.001; I2: 53%; dominant model: OR = 1.14; 95% CI 1.08–1.21; p < 0.001; I2: 41%; and recessive model: OR = 1.19; 95% CI 1.09–1.30; p < 0.001; I2: 44%). The level of heterogeneity was significant for all ethnic groups. No significant publication bias was found in this meta-analysis. Based on this meta-analysis, it can be confirmed that the rs4779584 polymorphism and CRC risk shares a positive correlation in patients where T allele was a susceptible factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenetic protein

CI:

Confidence interval

CRC:

Colorectal cancer

FEM:

Fixed-effects model

FMN 1:

Formin 1

GREM1:

Gremlin 1

GWAS:

Genome-wide association studies

IBD:

Inflammatory bowel disease

OR:

Odds ratio

REM:

Random-effects model

SCG5:

Secretogranin V

SNP:

Single nucleotide polymorphism

TGF-β:

Transforming growth factor β

References

  1. Wild CP, Stewart BW, Wild C (2014) World cancer report 2014. World Health Organization, Geneva

    Google Scholar 

  2. Hur SJ, Yoon Y, Jo C, Jeong JY, Lee KT (2019) Effect of dietary red meat on colorectal cancer risk—a review. Compr Rev Food Sci Food Saf 18(6):1812–1824

    Article  CAS  Google Scholar 

  3. Tu L, Yan B, Peng Z (2015) Common genetic variants (rs4779584 and rs10318) at 15q13. 3 contributes to colorectal adenoma and colorectal cancer susceptibility: evidence based on 22 studies. Mol Gen Genomics 290(3):901–912

    Article  CAS  Google Scholar 

  4. Abe M, Ito H, Oze I, Nomura M, Ogawa Y, Matsuo K (2017) The more from East-Asian, the better: risk prediction of colorectal cancer risk by GWAS-identified SNPs among Japanese. J Cancer Res Clin Oncol 143(12):2481–2492

    Article  PubMed  Google Scholar 

  5. Real LM, Ruiz A, Gayán J, González-Pérez A, Sáez ME, Ramírez-Lorca R et al (2014) A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis. PLoS One 9(6):e101178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yadav S, Chandra A, Kumar A, Mittal B (2018) Association of TERT-CLPTM1L and 8q24 common genetic variants with gallbladder cancer susceptibility and prognosis in north Indian population. Biochem Genet 56(4):267–282

    Article  CAS  PubMed  Google Scholar 

  7. Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, Broderick P et al (2008) Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40(1):26–28

    Article  CAS  PubMed  Google Scholar 

  8. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moon JR, Oh SJ, Lee CK, Chi SG, Kim HJ (2019) TGF-beta1 protects colon tumor cells from apoptosis through XAF1 suppression. Int J Oncol 54(6):2117–2126

    CAS  PubMed  Google Scholar 

  10. Bouatia-Naji N, Vatin V, Lecoeur C, Heude B, Proenca C, Veslot J et al (2007) Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity. BMC Med Genet 8:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yang H, Gao Y, Feng T, Jin T-B, Kang L-L, Chen C (2014) Meta-analysis of the rs4779584 polymorphism and colorectal cancer risk. PLoS One 9(2):e89736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hong Y, Wu G, Li W, Liu D, He K (2016) A comprehensive meta-analysis of genetic associations between five key SNPs and colorectal cancer risk. Oncotarget 7(45):73945–73959

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P (2017) MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics 18(1):563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Serrano-Fernandez P, Dymerska D, Kurzawski G, Derkacz R, Sobieszczańska T, Banaszkiewicz Z et al (2015) Cumulative small effect genetic markers and the risk of colorectal cancer in Poland, Estonia, Lithuania, and Latvia. Gastroenterol Res Pract 2015:1

    Article  Google Scholar 

  15. Baert-Desurmont S, Charbonnier F, Houivet E, Ippolito L, Mauillon J, Bougeard M et al (2016) Clinical relevance of 8q23, 15q13 and 18q21 SNP genotyping to evaluate colorectal cancer risk. Eur J Hum Genet 24(1):99

    Article  CAS  PubMed  Google Scholar 

  16. Xiong F, Wu C, Bi X, Yu D, Huang L, Xu J et al (2010) Risk of genome-wide association study–identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Prev Biomark 19(7):1855–1861

    Article  CAS  Google Scholar 

  17. Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, Howarth K et al (2011) Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet 7(6):e1002105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Von Holst S, Picelli S, Edler D, Lenander C, Dalen J, Hjern F et al (2010) Association studies on 11 published colorectal cancer risk loci. Br J Cancer 103(4):575

    Article  CAS  Google Scholar 

  19. Ho J, Choi S, Lee Y, Hui T, Cherny S, Garcia-Barcelo M et al (2011) Replication study of SNP associations for colorectal cancer in Hong Kong Chinese. Br J Cancer 104(2):369

    Article  CAS  PubMed  Google Scholar 

  20. Hong SN, Park C, Kim JI, Kim DH, Kim HC, Chang DK et al (2015) Colorectal cancer-susceptibility single-nucleotide polymorphisms in Korean population. J Gastroenterol Hepatol 30(5):849–857

    Article  CAS  PubMed  Google Scholar 

  21. Hosono S, Ito H, Oze I, Watanabe M, Komori K, Yatabe Y et al (2016) A risk prediction model for colorectal cancer using genome-wide association study-identified polymorphisms and established risk factors among Japanese: results from two independent case–control studies. Eur J Cancer Prev 25(6):500–507

    Article  CAS  PubMed  Google Scholar 

  22. Carvajal-Carmona LG, Zauber AG, Jones AM, Howarth K, Wang J, Cheng T et al (2013) Much of the genetic risk of colorectal cancer is likely to be mediated through susceptibility to adenomas. Gastroenterology 144(1):53–55

    Article  PubMed  Google Scholar 

  23. Talseth-Palmer BA, Brenne IS, Ashton KA, Evans T-J, McPhillips M, Groombridge C et al (2011) Colorectal cancer susceptibility loci on chromosome 8q23. 3 and 11q23. 1 as modifiers for disease expression in Lynch syndrome. J Med Genet 48(4):279–284

    Article  CAS  PubMed  Google Scholar 

  24. Talseth-Palmer BA, Wijnen JT, Brenne IS, Jagmohan-Changur S, Barker D, Ashton KA et al (2013) Combined analysis of three Lynch syndrome cohorts confirms the modifying effects of 8q23. 3 and 11q23. 1 in MLH1 mutation carriers. Int J Cancer 132(7):1556–1564

    Article  CAS  PubMed  Google Scholar 

  25. Hawken SJ, Greenwood CM, Hudson TJ, Kustra R, McLaughlin J, Yang Q et al (2010) The utility and predictive value of combinations of low penetrance genes for screening and risk prediction of colorectal cancer. Hum Genet 128(1):89–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Marchand L (2009) Genome-wide association studies and colorectal cancer. Surg Oncol Clin 18(4):663–668

    Article  Google Scholar 

  27. Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13(5):328–341

    Article  CAS  PubMed  Google Scholar 

  28. Church RH, Krishnakumar A, Urbanek A, Geschwindner S, Meneely J, Bianchi A et al (2015) Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 466(1):55–68

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Liu H, Zou L, Ke J, Zhang Y, Zhu Y et al (2017) A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site. Oncotarget 8(37):61318–61326

    Article  PubMed  PubMed Central  Google Scholar 

  30. Galamb O, Wichmann B, Sipos F, Spisák S, Krenács T, Tóth K et al (2012) Dysplasia-carcinoma transition specific transcripts in colonic biopsy samples. PLoS One 7(11):e48547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pelli A, Väyrynen JP, Klintrup K, Mäkelä J, Mäkinen MJ, Tuomisto A et al (2016) Gremlin1 expression associates with serrated pathway and favourable prognosis in colorectal cancer. Histopathology 69(5):831–838

    Article  PubMed  Google Scholar 

  32. Kidd M, Modlin IM, Drozdov I (2014) Gene network-based analysis identifies two potential subtypes of small intestinal neuroendocrine tumors. BMC Genomics 15(1):595

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakshit, S., Bhaskar, L.V.K.S. (2020). An Intergenic Variant rs4779584 Between SCG5 and GREM1 Contributes to the Increased Risk of Colorectal Cancer: A Meta-Analysis. In: Nagaraju, G.P., Peela, S. (eds) Novel therapeutic approaches for gastrointestinal malignancies. Diagnostics and Therapeutic Advances in GI Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5471-1_10

Download citation

Publish with us

Policies and ethics