Skip to main content
Log in

Electromembrane extraction as a new approach for determination of free concentration of phenytoin in plasma using capillary electrophoresis

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Purpose

Electromembrane extraction is a new membrane-based extraction method in which charged compounds are extracted by an electric field. So far, this method has been used to extract and isolate a variety of acidic and basic drugs from various samples, including blood and plasma. However, in this procedure, it is not yet clear whether only unbound fraction of a drug is extracted or the total drug. The aim of this study is to reveal the nature of drug extraction in the presence of plasma proteins.

Methods

To determine the nature of the extraction, the electromembrane extraction was performed from plasma solutions of phenytoin with concentrations 0.03 and 1.0 μg/mL, then the result was compared with the values obtained from the electromembrane extraction of ultrafiltrate of the same solutions (free concentration) and protein-free ultrafiltrate of plasma with final concentration of 0.03 and 1.0 μg/mL (total concentration). For this purpose, EME followed by capillary electrophoresis coupled with diode array detection was optimized and validated.

Results

The results showed that the electromembrane extraction method was only able to extract the unbound fraction of phenytoin from plasma samples. The method was validated over a concentration range of 0.03–4 μg/mL. The inter and intra-assay precisions were less than 6.7%. The phenytoin protein binding was also determined to be in agreement with the literature data and confirms the validity of this method.

Conclusion

This sensitive and quick EME approach for determining the free concentration of a phenytoin, can be a good alternative to classic methods for therapeutic drug monitoring and pharmacokinetic studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dasgupta A. Monitoring Free Drug Concentration: Clinical Usefulness and Analytical Challenges. Clinical Challenges in Therapeutic Drug Monitoring. Elsevier; 2016. p. 71–100.

  2. Richens A. Clinical pharmacokinetics of phenytoin. Clin Pharmacokinet. 1979;4(3):153–69.

    CAS  PubMed  Google Scholar 

  3. Levine M, Chang T. Therapeutic drug monitoring of phenytoin rationale and current status. Clin Pharmacokinet. 1990;19(5):341–58.

    CAS  PubMed  Google Scholar 

  4. Musteata FM. Measuring and using free drug concentrations: has there been ‘real’progress? : Future Science; 2017.

  5. Fedler C, Stewart MJ. Plasma total phenytoin: a possibly misleading test in developing countries. Ther Drug Monit. 1999;21(2):155–60.

    CAS  PubMed  Google Scholar 

  6. Dutkiewicz G, Wojcicki J, Gawrońska-Szklarz B. The influence of hyperlipidemia on pharmacokinetics of free phenytoin. Neurol Neurochir Pol. 1995;29(2):203–11.

    CAS  PubMed  Google Scholar 

  7. Dasgupta A, Crossey MJ. Elevated free fatty acid concentrations in lipemic sera reduce protein binding of valproic acid significantly more than phenytoin. Am J Med Sci. 1997;313(2):75–9.

    CAS  PubMed  Google Scholar 

  8. Naidu S, Moodley J, Botha J, McFadyen L. The efficacy of phenytoin in relation to serum levels in severe pre-eclampsia and eclampsia. BJOG. 1992;99(11):881–6.

    CAS  Google Scholar 

  9. Reidenberg MM, Drayer DE. Alteration of drug-protein binding in renal disease. Clin Pharmacokinet. 1984;9(1):18–26.

    PubMed  Google Scholar 

  10. Lindow J, Wijdicks EF. Phenytoin toxicity associated with hypoalbuminemia in critically ill patients. Chest. 1994;105(2):602–4.

    CAS  PubMed  Google Scholar 

  11. von Winckelmann SL, Spriet I, Willems L. Therapeutic drug monitoring of phenytoin in critically ill patients. Pharmacotherapy. 2008;28(11):1391–400.

    Google Scholar 

  12. Wolf GK, McClain CD, Zurakowski D, Dodson B, McManus ML. Total phenytoin concentrations do not accurately predict free phenytoin concentrations in critically ill children. Pediatr Crit Care Med. 2006;7(5):434–9.

    PubMed  Google Scholar 

  13. Zielmann S, Mielck F, Kahl R, Kazmaier S, Sydow M, Kolk J, et al. A rational basis for the measurement of free phenytoin concentration in critically ill trauma patients. Ther Drug Monit. 1994;16(2):139–44.

    CAS  PubMed  Google Scholar 

  14. Sadeghi K, Hadi F, Ahmadi A, Hamishehkar H, Beigmohammadi M-T, Mahmoodpoor A, et al. Total phenytoin concentration is not well correlated with active free drug in critically-ill head trauma patients. J Res Pharm Pract. 2013;2(3):105–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thakral A, Shenoy R, Deleu D. Acute visual dysfunction following phenytoin-induced toxicity. Acta Neurol Belg. 2003;103(4):218–20.

    PubMed  Google Scholar 

  16. Burt M, Anderson DC, Kloss J, Apple FS. Evidence-based implementation of free phenytoin therapeutic drug monitoring. Clin Chem. 2000;46(8):1132–5.

    CAS  PubMed  Google Scholar 

  17. Iwamoto T, Kagawa Y, Naito Y, Kuzuhara S, Okuda M. Clinical evaluation of plasma free phenytoin measurement and factors influencing its protein binding. Biopharm Drug Dispos. 2006;27(2):77–84.

    CAS  PubMed  Google Scholar 

  18. Booker H, Darcey B. Serum concentrations of free diphenylhydantoin and their relationship to clinical intoxication. Epilepsia. 1973;14(2):177–84.

    CAS  PubMed  Google Scholar 

  19. Kilpatrick C, Wanwimolruk S, Wing L. Plasma concentrations of unbound phenytoin in the management of epilepsy. Br J Clin Pharmacol. 1984;17(5):539–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Connors KA. Binding constants: the measurement of molecular complex stability. Hoboken: Wiley-Interscience; 1987.

    Google Scholar 

  21. J-d H. Errors in estimating the unbound fraction of drugs due to the volume shift in equilibrium dialysis. J Pharm Sci. 1983;72(11):1368–9.

    Google Scholar 

  22. Oravcova J, Bo B, Lindner W. Drug-protein binding studies new trends in analytical and experimental methodology. J Chromatogr B. 1996;677(1):1–28.

    Google Scholar 

  23. Mapleson W. Computation of the effect of Donnan equilibrium on pH in equilibrium dialysis. J Pharmacol Methods. 1987;17(3):231–42.

    CAS  PubMed  Google Scholar 

  24. Vuignier K, Schappler J, Veuthey J-L, Carrupt P-A, Martel S. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398(1):53–66.

    CAS  PubMed  Google Scholar 

  25. Zini R. Methods in drug protein binding analysis. Human Pharmacology The Basis of Clinical Pharmacology Elsevier Science Publishers, Amsterdam 1991:235–282.

  26. Kurz H, Trunk H, Weitz B. Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration. Arzneimittelforschung. 1977;27(7):1373–80.

    CAS  PubMed  Google Scholar 

  27. Liu Z, Li F, Huang Y. Determination of unbound drug concentration and protein–drug binding fraction in plasma. Biomed Chromatogr. 1999;13(4):262–6.

    CAS  PubMed  Google Scholar 

  28. Koike Y, Magnusson A, Steiner E, Rane A, Sjöqvist F. Ultrafiltration compared with equilibrium dialysis in the determination of unbound phenytoin in plasma. Ther Drug Monit. 1985;7(4):461–5.

    CAS  PubMed  Google Scholar 

  29. Argyle JC, Kinniburgh DW, Costa R, Jennison T. Evaluation of an ultrafiltration-fluorescence polarization immunoassay for monitoring unbound phenytoin. Ther Drug Monit. 1984;6(1):117–20.

    CAS  PubMed  Google Scholar 

  30. Melten JW, Wittebrood AJ, Willems HJ, Faber GH, Wemer J, Faber DB. Comparison of equilibrium dialysis, ultrafiltration, and gel permeation chromatography for the determination of free fractions of phenobarbital and phenytoin. J Pharm Sci. 1985;74(6):692–4.

    CAS  PubMed  Google Scholar 

  31. Joern WA. Gas-chromatographic assay of free phenytoin in ultrafiltrates of plasma: test of a new filtration apparatus and specimen stability. Clin Chem. 1981;27(3):417–21.

    CAS  PubMed  Google Scholar 

  32. Lázaro E, Lowe PJ, Briand X, Faller B. New approach to measure protein binding based on a parallel artificial membrane assay and human serum albumin. J Med Chem. 2008;51(7):2009–17.

    PubMed  Google Scholar 

  33. Pedersen-Bjergaard S, Rasmussen KE. Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A. 2006;1109(2):183–90.

    CAS  PubMed  Google Scholar 

  34. Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S. Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Anal Bioanal Chem. 2009;393(3):921–8.

    CAS  PubMed  Google Scholar 

  35. Huang C, Eibak LEE, Gjelstad A, Shen X, Trones R, Jensen H, et al. Development of a flat membrane based device for electromembrane extraction: a new approach for exhaustive extraction of basic drugs from human plasma. J Chromatogr A. 2014;1326:7–12.

    CAS  PubMed  Google Scholar 

  36. Kjelsen IJØ, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S. Low-voltage electromembrane extraction of basic drugs from biological samples. J Chromatogr A. 2008;1180(1–2):1–9.

    CAS  PubMed  Google Scholar 

  37. Eibak LEE, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S. Exhaustive electromembrane extraction of some basic drugs from human plasma followed by liquid chromatography–mass spectrometry. J Pharm Biomed Anal. 2012;57:33–8.

    PubMed  Google Scholar 

  38. Musteata FM, Pawliszyn J, Qian MG, Wu J-T, Miwa GT. Determination of drug plasma protein binding by solid phase microextraction. J Pharm Sci. 2006;95(8):1712–22.

    CAS  PubMed  Google Scholar 

  39. Kariv I, Cao H, Oldenburg KR. Development of a high throughput equilibrium dialysis method. J Pharm Sci. 2001;90(5):580–7.

    CAS  PubMed  Google Scholar 

  40. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M10 Draft Guideline. https://database.ich.org/sites/default/files/M10_EWG_Draft_Guideline.pdf. Accessed 20 April 2020.

  41. Seyfinejad B, Meshkini A, Habibolahi P, Ozkan SA, Jouyban A. Determination of phenytoin in exhaled breath condensate using electromembrane extraction followed by capillary electrophoresis. Electrophoresis. 2020;41(9):666–77.

    CAS  PubMed  Google Scholar 

  42. Anton AH. The effect of disease, drugs, and dilution on the binding of sulfonamides in human plasma. Clin Pharmacol Ther. 1968;9(5):561–7.

    CAS  PubMed  Google Scholar 

  43. Lima JJ, MacKichan JJ, Libertin N, Sabino J. Influence of volume shifts on drug binding during equilibrium dialysis: correction and attenuation. J Pharmacokinet Biopharm. 1983;11(5):483–98.

    CAS  PubMed  Google Scholar 

  44. Boudinot FD, Jusko WJ. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis. J Pharm Sci. 1984;73(6):774–80.

    CAS  PubMed  Google Scholar 

  45. Banker MJ, Clark TH, Williams JA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci. 2003;92(5):967–74.

    CAS  PubMed  Google Scholar 

  46. Ehrnebo M, Agurell S, Jalling B, Boreus L. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–93.

    CAS  PubMed  Google Scholar 

  47. Monks A, Richens A. Effect of single doses of sodium valproate on serum phenytoin level and protein binding in epileptic petients. Clin Pharmacol Ther. 1980;27(1):89–95.

    CAS  PubMed  Google Scholar 

  48. Hooper WD, Bochne F, Eadie MJ, Tyrer JH. Plasma protein binding of diphenylhydantoin effects of sex hormones, renal and hepatic disease. Clin Pharmacol Ther. 1974;15(3):276–82.

    CAS  PubMed  Google Scholar 

  49. Odar-Cederlöf I, Borgå O. Impaired plasma protein binding of phenytoin in uremia and displacement effect of salicylic acid. Clin Pharmacol Ther. 1976;20(1):36–47.

    PubMed  Google Scholar 

  50. Amiri Pebdani A, Dadfarnia S, Haji Shabani AM, Khodadoust S, Talebianpoor MS. Modified dispersive liquid-phase microextraction based on sequential injection solidified floating organic drop combined with HPLC for the determination of phenobarbital and phenytoin. J Sep Sci. 2018;41(2):509–17.

    CAS  PubMed  Google Scholar 

  51. Pebdani AA, Dadfarnia S, Shabani AMH, Khodadoust S. Application of Ni: ZnS nanoparticles loaded on magnetic multi-walled carbon nanotubes as a sorbent for dispersive micro-solid phase extraction of phenobarbital and phenytoin prior to HPLC analysis: experimental design. RSC Adv. 2016;6(92):89250–8.

    CAS  Google Scholar 

  52. Ferreira A, Rodrigues M, Oliveira P, Francisco J, Fortuna A, Rosado L, et al. Liquid chromatographic assay based on microextraction by packed sorbent for therapeutic drug monitoring of carbamazepine, lamotrigine, oxcarbazepine, phenobarbital, phenytoin and the active metabolites carbamazepine-10, 11-epoxide and licarbazepine. J Chromatogr B. 2014;971:20–9.

    CAS  Google Scholar 

  53. Bereczki A, Tolokan A, Horvai G, Horvath V, Lanza F, Hall AJ, et al. Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. J Chromatogr A. 2001;930(1–2):31–8.

    CAS  PubMed  Google Scholar 

  54. Asadi M, Dadfarnia S, Haji Shabani AM, Abbasi B. Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography. J Sep Sci. 2015;38(14):2510–6.

    CAS  PubMed  Google Scholar 

  55. Cantú MD, Toso DR, Lacerda CA, Lanças FM, Carrilho E, Queiroz MEC. Optimization of solid-phase microextraction procedures for the determination of tricyclic antidepressants and anticonvulsants in plasma samples by liquid chromatography. Anal Bioanal Chem. 2006;386(2):256–63.

    PubMed  Google Scholar 

  56. Queiroz MEC, Silva SM, Carvalho D, Lancas FM. Determination of lamotrigine simultaneously with carbamazepine, carbamazepine epoxide, phenytoin, phenobarbital, and primidone in human plasma by SPME-GC-TSD. J Chromatogr Sci. 2002;40(4):219–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This report is a part of the results of B. Seyfinejad’s PhD thesis submitted to the Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Partial financial support under grant number of 61555 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Jouyban.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyfinejad, B., Khoubnasabjafari, M., Ziaei, S.E. et al. Electromembrane extraction as a new approach for determination of free concentration of phenytoin in plasma using capillary electrophoresis. DARU J Pharm Sci 28, 615–624 (2020). https://doi.org/10.1007/s40199-020-00366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-020-00366-5

Keywords

Navigation