Skip to main content

Ion-Exchange Chromatography: Basic Principles and Application

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fritz JS (2004) Early milestones in the development of ion-exchange chromatography: a personal account. J Chromatogr A 1039:3–12

    Article  CAS  PubMed  Google Scholar 

  2. Lucy CA (2003) Evolution of ion-exchange: from Moses to the Manhattan Project to modern times. J Chromatogr A 1000:711–724

    Article  CAS  PubMed  Google Scholar 

  3. Kent UM (1999) Purification of antibodies using ion-exchange chromatography. Methods Mol Biol 115:19–22

    CAS  PubMed  Google Scholar 

  4. Levison PR (2003) Large-scale ion-exchange column chromatography of proteins: comparison of different formats. J Chromatogr B Analyt Technol Biomed Life Sci 790:17–33

    Article  CAS  PubMed  Google Scholar 

  5. Cummins PM, O’Connor B (1996) Bovine brain pyroglutamyl aminopeptidase (type-I): purification and characterization of a neuropeptide-inactivating peptidase. Int J Biochem Cell Biol 28:883–893

    Article  CAS  PubMed  Google Scholar 

  6. Wu B, Wu L, Chen D, Yang Z, Luo M (2009) Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J Ind Microbiol Biotechnol 36:451–459

    Article  PubMed  Google Scholar 

  7. Knudsen HL, Fahrner RL, Xu Y, Norling LA, Blank GS (2001) Membrane ion-exchange chromatography for process-scale antibody purification. J Chromatogr A 907:145–154

    Article  CAS  PubMed  Google Scholar 

  8. Mant CT, Hodges RS (2008) Mixed-mode hydrophilic interaction/cation-exchange chromatography: separation of complex mixtures of peptides of varying charge and hydrophobicity. J Sep Sci 31:1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fekkes D, Voskuilen-Kooyman A, Jankie R, Huijmans J (2000) Precise analysis of primary amino acids in urine by an automated high-performance liquid chromatography method: comparison with ion-exchange chromatography. J Chromatogr B Biomed Sci Appl 744:183–188

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y, Hebron HR, Hang J (2008) High performance DNA purification using a novel ion-exchange matrix. J Biomol Tech 19:205–210

    PubMed  PubMed Central  Google Scholar 

  11. Bonn G (1987) High-performance liquid chromatographic isolation of 14C-labelled gluco-oligosaccharides, monosaccharides and sugar degradation products on ion-exchange resins. J Chromatogr 387:393–398

    Article  CAS  PubMed  Google Scholar 

  12. Hajós P, Nagy L (1998) Retention behaviours and separation of carboxylic acids by ion-exchange chromatography. J Chromatogr B Biomed Sci Appl 717:27–38

    Article  PubMed  Google Scholar 

  13. Ahmed H (ed) (2004) Principals and reactions of protein extraction, purification and characterization. CRC Press, Boca Raton, FL

    Google Scholar 

  14. Männisto PT, Venäläinen J, Jalkanen A, García-Horsman JA (2007) Prolyl oligopeptidase: a potential target for the treatment of cognitive disorders. Drug News Perspect 20:293–305

    Article  PubMed  Google Scholar 

  15. Polgár L (2002) The prolyl oligopeptidase family. Cell Mol Life Sci 59:349–362

    Article  PubMed  Google Scholar 

  16. Kastner M (2000) Protein liquid chromatography. In: Kastner M (ed) Journal of Chromatography Library, vol 61. Elsevier Science, Amsterdam

    Google Scholar 

  17. Acikara OB (2013) Ion-exchange chromatography and its applications, Chapter 2. In: Martin DF, Martin BB (eds) Column chromatography. INTECH Open Science, New York, pp 31–58

    Google Scholar 

  18. Kalwant S, Porter AG (1991) Purification and characterization of human brain prolyl endopeptidase. Biochem J 276:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma KK, Ortwerth BJ (1994) Purification and characterization of prolyl oligopeptidase from bovine lens. Exp Eye Res 59:107–115

    Article  CAS  PubMed  Google Scholar 

  20. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  21. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  22. Yoshimoto T, Ogita K, Walter R, Koida M, Tsuru D (1979) Post-proline cleaving enzyme: synthesis of a new fluorogenic substrate and distribution of the endopeptidase in rat tissues and body fluids of man. Biochim Biophys Acta 569:184–192

    Article  CAS  PubMed  Google Scholar 

  23. Tisch TL, Frost R, Liao JL, Lam WK, Remy A, Scheinpflug E, Siebert C, Song H, Stapleton A (1998) Biochemical separations by continuous-bed chromatography. J Chromatogr A 816:3–9

    Article  CAS  PubMed  Google Scholar 

  24. Jacoby M (2006) Monolithic chromatography: non-traditional column materials improve separations of biomixtures. Chem Eng News 84:14–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Cummins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cummins, P.M., Rochfort, K.D., O’Connor, B.F. (2017). Ion-Exchange Chromatography: Basic Principles and Application. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics