Skip to main content
Log in

Portevin–Le Chatelier Effect in Nimonic 263 Superalloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The Portevin–Le Chatelier (PLC) effect in the Nimonic 263 superalloy was investigated by tensile test at a wide temperature ranges from 293 to 1033 K and strain rates between 0.1 and 6.25 × 10−6 s−1. Simple binary alloys Ni-0.4C, Ni-24Cr and Ni-5(8)Mo were also tested in order to identify which elements were responsible for the PLC effect in the Nimonic 263 alloy. The results demonstrated that for Nimonic 263 alloy, PLC effect occurred at certain temperatures and low strain rates. Normal PLC effect exhibiting type-A and -(A + B) serrations was attributed to the enhanced solute diffusion with increasing temperature, while inverse PLC effect with type-C serration was caused by unlocking process. The activation energy for the normal PLC effect was calculated to be 68 kJ/mol, and diffusion of substitutional solutes such as Cr and Mo was identified to be responsible for the PLC effect. In comparison with the PLC effect in simple binary alloys, solute atmospheres formed by different kinds of atoms in Nimonic 263 alloy work more effectively, increasing locking strength and corresponding mean stress drop magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zhao, X. Xie, G.D. Smith, S.J. Patel, Mater. Sci. Eng., A 355, 96 (2003)

    Article  Google Scholar 

  2. N.D. Evans, P.J. Maziasz, R.W. Swindeman, G.D. Smith, Scr. Mater. 51, 503 (2004)

    Article  Google Scholar 

  3. Z.H. Zhong, Y.F. Gu, Y. Yuan, Z. Shi, Mater. Lett. 109, 38 (2013)

    Article  Google Scholar 

  4. J. Klöwer, R.U. Husemann, M. Bader, Procedia Eng. 55, 226 (2013)

    Article  Google Scholar 

  5. J.C. Zhao, V. Ravikumar, A.M. Beltran, Metall. Mater. Trans. A 32, 1271 (2001)

    Article  Google Scholar 

  6. H.U. Hong, I.S. Kim, B.G. Choi, M.Y. Kim, C.Y. Jo, Mater. Sci. Eng., A 517, 125 (2009)

    Article  Google Scholar 

  7. W.Z. Wang, H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, M.Y. Kim, C.Y. Jo, Mater. Sci. Eng., A 523, 242 (2009)

    Article  Google Scholar 

  8. D.W. Kim, W.S. Ryu, J.H. Hong, S.K. Choi, J. Mater. Sci. 33, 675 (1998)

    Article  Google Scholar 

  9. S. Kumar, E. Pink, Acta Mater. 45, 5295 (1997)

    Article  Google Scholar 

  10. K. Gopinath, A.K. Gogia, S.V. Kamat, U. Ramamurty, Acta Mater. 57, 1243 (2009)

    Article  Google Scholar 

  11. Q. Hu, Q. Zhang, P. Cao, S. Fu, Acta Mater. 60, 1647 (2012)

    Article  Google Scholar 

  12. Q. Zhang, Z. Jiang, H. Jiang, Z. Chen, X. Wu, Int. J. Plast 21, 2150 (2005)

    Article  Google Scholar 

  13. C.Y. Cui, T. Jin, X.F. Sun, J. Mater. Sci. 46, 5546 (2011)

    Article  Google Scholar 

  14. V. Shankar, M. Valsan, K. Bhanu, S. Rao, S.L. Mannan, Metall. Mater. Trans. A 35, 3129 (2004)

    Article  Google Scholar 

  15. A.H. Cottrell, Philos. Mag. 44, 829 (1953)

    Article  Google Scholar 

  16. W.A. Curtin, D.L. Olmsted, L.G. Hector Jr, Nature Mater. 5, 875 (2006)

    Article  Google Scholar 

  17. A. Van Den Beukel, Phys. Stat. Sol. 30, 197 (1975)

    Article  Google Scholar 

  18. P.G. McCormick, Acta Metall. 20, 351 (1972)

    Article  Google Scholar 

  19. R.W. Hayes, Acta Metall. 3(1), 365 (1983)

    Article  Google Scholar 

  20. C.L. Hale, W.S. Rollings, M.L. Weaver, Mater. Sci. Eng., A 300, 153 (2001)

    Article  Google Scholar 

  21. S.A. Nalawade, M. Sundararaman, R. Kishore, J.G. Shah, Scr. Mater. 59, 991 (2008)

    Article  Google Scholar 

  22. R.K. Ham, D. Jaffrey, Philos. Mag. 15, 247 (1966)

    Article  Google Scholar 

  23. S. Fu, T. Cheng, Q. Zhang, Q. Hu, P. Cao, Acta Mater. 60, 6650 (2012)

    Article  Google Scholar 

  24. P. Rodriguez, Bull. Mater. Sci. 6, 653 (1984)

    Article  Google Scholar 

  25. K. Chihab, Y. Estrin, L.P. Kubin, J. Vergnol, Scr. Metall. 21, 203 (1987)

    Article  Google Scholar 

  26. A. Ghosh, in ASM handbook, vol. 14A, ed. by S.L. Semiatin (ASM International, 2005), p. 563

  27. C. J. Smithels (ed.), Metals reference book, 6th edn, (Plenum Press, New York, 1983)

  28. A.W. Sleeswyk, Acta Metall. 6, 598 (1958)

    Article  Google Scholar 

  29. R.W. Balluffi, Phys. Status Solidi 42, 11 (1970)

    Article  Google Scholar 

  30. M. Militzen, W.P. Sun, J.J. Jones, Acta Metall. Mater. 42, 133 (1994)

    Article  Google Scholar 

  31. H. Mehrer (ed.), Diffusion in solid metals and alloys (Springer, New York, 1990)

    Google Scholar 

  32. A. Kalk, C. Schwink, Philos. Mag. 72, 315 (1995)

    Article  Google Scholar 

  33. P. Penning, Acta Metall. 20, 1169 (1972)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by “Hundreds of Talents Project” and National Basic Research Program of China (No. 2010CB631206) (Nos. 51171179, 51128101 and 51271174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Yong Cui.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, GM., Tian, CG., Cui, CY. et al. Portevin–Le Chatelier Effect in Nimonic 263 Superalloy. Acta Metall. Sin. (Engl. Lett.) 28, 542–549 (2015). https://doi.org/10.1007/s40195-015-0230-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0230-z

Keywords

Navigation