Skip to main content
Log in

Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Ni3Al-based alloys have drawn much attention as candidates for high-temperature structural materials due to their excellent comprehensive properties. The microstructure and corresponding mechanical properties of Ni3Al-based alloys are known to be susceptible to heat treatment. Thus, a significant step is to employ various heat treatments to derive the desirable mechanical properties of the alloys. This paper briefly summarizes the recent advances in the microstructure evolution that occurs during the heat treatment of Ni3Al-based alloys. Aside from γ′ phase and γ phase, the precipitations of β phase, α-Cr precipitates, and carbides are also found in Ni3Al-based alloys with the addition of various alloying elements. The evolution in morphology, size, and volume fraction of various types of secondary phases during heat treatment are reviewed, involving γ′ phase, β phase, α-Cr precipitate, and carbides. The kinetics of the growth of precipitates are also analyzed. Furthermore, the influences of heat treatment on the mechanical properties of Ni3Al-based alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Liu, and J.O. Stiegler, Ductile ordered intermetallic alloys, Science, 226(1984), No. 4675, p. 636.

    Article  CAS  Google Scholar 

  2. R. Kozubski, Long-range order kinetics in Ni3Al-based intermetallic compounds with L12-type superstructure, Prog. Mater. Sci., 41(1997), No. 1–2, p. 1.

    Article  CAS  Google Scholar 

  3. P. Jozwik, W. Polkowski, and Z. Bojar, Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities, Materials, 8(2015), No. 5, p. 2537.

    Article  CAS  Google Scholar 

  4. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, Y. Huang, H.J. Li, and H.P. Wang, Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression, J. Alloys Compd., 712(2017), p. 687.

    Article  CAS  Google Scholar 

  5. S.A. David and S.C. Deevi, Welding of unique and advanced ductile intermetallic alloys for high-temperature applications, Sci. Technol. Weld. Joining, 22(2017), No. 8, p. 681.

    Article  CAS  Google Scholar 

  6. G. Karin, H.L. Luo, D. Feng, and C.H. Li, Ni3Al-based intermetallic alloys as a new type of high-temperature and wear-resistant materials, J. Iron Steel Res. Int., 14(2007), No. 5, p. 21.

    Article  Google Scholar 

  7. Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, and Y.C. Liu, Precipitate coarsening and its effects on the hot deformation behavior of the recently-strengthened superalloys, J. Mater. Sci. Technol., 67(2021), p. 95.

    Article  Google Scholar 

  8. V.K. Sikka S.C. Deevi, S. Viswanathan, R.W. Swindeman, and M.L. Santella, Advances in processing of Ni3Al-based irrter-metallics and applications, Intermetallics, 8(2000), No. 9–11, p. 1329.

    Article  CAS  Google Scholar 

  9. M. Yamaguchi, H. Inui, and K. Ito, High-temperature structural intermetallics, Acta Mater., 48(2000), No. 1, p. 307.

    Article  CAS  Google Scholar 

  10. N.S. Stoloff, C.T. Liu, and S.C. Deevi, Emerging applications of intermetallics, Intermetallics, 8(2000), No. 9–11, p. 1313.

    Article  CAS  Google Scholar 

  11. M.H. Enayati and M. Salehi, Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying, J. Mater. Sci., 40(2005), No. 15, p. 3933.

    Article  CAS  Google Scholar 

  12. J.H. Schneibel, P.F. Tortorelli, R.O. Ritchie, and J.J. Kruzic, Optimization of Mo-Si-B Intermetallics, Metall. Mater. Trans. A, 36(2005), No. 3, p. 525.

    Article  Google Scholar 

  13. J.Y. Guo, Y.F. Li, C. Li, L.M. Yu, H.J. Li, Z.M. Wang, and Y.C. Liu, Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys, Mater. Charact., 171(2021), art. No. 110748.

  14. L.J. Duan and Y.C. Liu, Relationships between elastic constants and EAM/FS potential functions for cubic crystals, Acta Metall. Sin., 56(2020), No. 1, p. 112.

    Google Scholar 

  15. W. Polkowski, P. Jöźwik, K. Karczewski, and Z. Bojar, Evolution of crystallographic texture and strain in a fine-grained Ni3Al (Zr, B) intermetallic alloy during cold rolling, Arch. Civ. Mech. Eng., 14(2014), No. 4, p. 550.

    Article  Google Scholar 

  16. J.L. Pei, Y.F. Li, C. Li, Z.M. Wang, Y.C. Liu, and H.J. Li, Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys, J. Mater. Sci. Technol., 52(2020), p. 162.

    Article  Google Scholar 

  17. S.C. Deevi and V.K. Sikka, Nickel and iron aluminides: An overview on properties, processing, and applications, Intermetallics, 4(1996), No. 5, p. 357.

    Article  CAS  Google Scholar 

  18. L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, V.E. Ovcharenko, L.Z. Zhou, and H.Q. Ye, Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion, Intermetallics, 17(2009), No. 7, p. 572.

    Article  CAS  Google Scholar 

  19. J.G. Yu, Q.X. Zhang, and Z.F. Yue, Tensile mechanical properties of Ni3Al nanowires at intermediate temperature, RSC Adv., 4(2014), No. 40, art. No. 20789.

  20. S.V. Raju, B.K. Godwal, A.K. Singh, R. Jeanloz, and S.K. Saxena, High-pressure strengths of Ni3Al and Ni–Al–Cr, J. Alloys Compd., 741(2018), p. 642.

    Article  CAS  Google Scholar 

  21. C.T. Liu, C.L. White, and J.A. Horton, Effect of boron on grain-boundaries in Ni3Al, Acta Metall., 33(1985), No. 2, p. 213.

    Article  CAS  Google Scholar 

  22. H.B. Motejadded, M. Soltanieh, and S. Rastegari, An investigation about the effect of annealing conditions on microstructure in a Ni3Al base alloy, J. Alloys Compd., 486(2009), No. 1–2, p. 881.

    Article  CAS  Google Scholar 

  23. J.S. Wang, Dislocation nucleation and the intrinsic fracture behavior of L12 intermetallic alloys, Acta Mater., 46(1998), No. 8, p. 2663.

    Article  CAS  Google Scholar 

  24. S.K. Shee, S.K. Pradhan, and M. De, Effect of alloying on the microstructure and mechanical properties of Ni3Al, J. Alloys Compd., 265(1998), No. 1–2, p. 249.

    Article  CAS  Google Scholar 

  25. K. Aoki and O. Izumi, On the ductility of the intermetallic compound Ni3Al, Trans. Jpn. Inst. Met., 19(1978), No. 4, p. 203.

    Article  CAS  Google Scholar 

  26. E.P. George, C.T. Liu, H. Lin, and D.P. Pope, Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al, Mater. Sci. Eng. A, 192–193(1995), p. 277.

    Article  Google Scholar 

  27. Y.F. Gu, D.L. Lin, T.L. Lin, and J.T. Guo, Ductilization of Ni3Al by alloying with zirconium, Scripta Mater., 35(1996), No. 5, p. 609.

    Article  CAS  Google Scholar 

  28. E.P. George, C.T. Liu, and D.P. Pope, Environmental embrittlement: The major cause of room-temperature brittleness in poly-crystalline Ni3Al, Scripta Metall. Mater., 27(1992), No. 3, p. 365.

    Article  CAS  Google Scholar 

  29. J.T. Guo, H. Li, and C. Sun, Effect of Zr, Cr and B addictives on microstructure and mechanical properties of Ni3Al alloys, Acta Metall. Sin. Engl. Ed., 3(1990), No. 3, p. 170.

    Google Scholar 

  30. Y.F. Li, J.T. Guo, L.Z. Zhou, and H.Q. Ye, Effect of recrystallization on room-temperature mechanical properties of Zr-doped Ni3Al alloy, Mater. Lett., 58(2004), No. 12–13, p. 1853.

    Article  CAS  Google Scholar 

  31. I. Baker, Improving the ductility of intermetallic compounds by particle-induced slip homogenization, Scripta Mater., 41(1999), No. 4, p. 409.

    Article  CAS  Google Scholar 

  32. E.M. Schulson, T.P. Weihs, D.V. Viens, and I. Baker, The effect of grain size on the yield strength of Ni3Al, Acta Metall., 33(1985), No. 9, p. 1587.

    Article  CAS  Google Scholar 

  33. M. Takeyama and C.T. Liu, Effect of grain size on yield strength of Ni3Al and other alloys, J. Mater. Res., 3(1988), No. 4, p. 665.

    Article  CAS  Google Scholar 

  34. P. Jözwik and Z. Bojar, Analysis of grain size effect on tensile properties of Ni3Al based intermetallic strips, Arch. Metall. Mater., 52(2007), No. 2, p. 321.

    Google Scholar 

  35. X. Zhang, H.W. Li, M. Zhan, Z.B. Zheng, J. Gao, and G.D. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations, J. Mater. Sci. Technol., 36(2020), p. 79.

    Article  Google Scholar 

  36. K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Micro-structure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889.

    Article  CAS  Google Scholar 

  37. S.A. Sani, H. Arabi, S. Kheirandish, and G. Ebrahimi, Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ;’-cobalt-based superalloy, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 222.

    Article  CAS  Google Scholar 

  38. Y.C. Liu, H.J. Zhang, Q.Y. Guo, X.S. Zhou, Z.Q. Ma, Y. Huang, and H.J. Li, Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency, Acta Metall. Sin., 54(2018), No. 11, p. 1653.

    CAS  Google Scholar 

  39. D.L. Cui, X.Y. Xie, S.S. Li, H. Zhang, and S.K. Gong, Heat treatment of a Ni3Al-based single crystal alloy IC32, Mater. Sci. Forum, 747–748(2013), p. 665.

    Article  CAS  Google Scholar 

  40. Z.G. Kong, L. Ji, S.S. Li, Y.F. Han, and H.B. Xu, Effect of heat treatment on microstructure and mechanical properties for a Ni3Al base single crystal alloy DDIC6, Mater. Sci. Forum, 546–549(2007), p. 1443.

    Article  Google Scholar 

  41. E. Karakose and M. Keskin, Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy, Int. J. Mater. Res., 106(2015), No. 1, p. 29.

    Article  CAS  Google Scholar 

  42. J. Lapin, Effect of ageing on the microstructure and mechanical behaviour of a directionally solidified Ni3Al-based alloy, Inter-metallics, 5(1997), No. 8, p. 615.

    CAS  Google Scholar 

  43. D. Lee, Effects of solution heat treatment on the microstructure, oxidation, and mechanical properties of a cast Ni3Al-based in-termetallic alloy, Met. Mater. Int., 12(2006), No. 2, p. 153.

    Article  CAS  Google Scholar 

  44. C. Ai, T.T. Zhai, M.Q. Ou, H. Zhang, L. Liu, S.S. Li, and S.K. Gong, Influence of heat treatment on microstructure of Ni3Al based single crystal superalloy, Mater. Res. Innov., 18(2014), Suppl. 4, p. 309.

    Google Scholar 

  45. J. Wu, Y.C. Liu, C. Li, Y.T. Wu, X.C. Xia, and H.J. Li, Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr content, Acta Metall. Sin., 56(2020), No. 1, p. 21.

    Google Scholar 

  46. Y. Mishima, S. Ochiai, and T. Suzuki, Lattice parameters of Ni(γ), Ni3Al(γ;’) and Ni3Ga(γ;’) solid solutions with additions of transition and B-subgroup elements, Acta Metall., 33(1985), No. 6, p. 1161.

    Article  CAS  Google Scholar 

  47. F. Zhou, Y. Zhou, J. Wang, J.M. Liang, H.Y. Gao, and M.D. Kang, Enlightening from γ, γ;’ and β phase transformations in Al–Co–Ni alloy system: A review, Curr. Opin. Solid State Mater. Sci., 23(2019), No. 6, art. No. 100784.

  48. W. Gale, and Z.M. Abdo, Cast, and aged β-NiAl-β;’-Ni2AlTi-γ;’-Ni3Al-α-Cr alloys: A microstructural and mechanical properties investigation, J. Mater. Sci., 34(1999), No. 18, p. 4425.

    Article  CAS  Google Scholar 

  49. C.T. Liu, W. Jemian, H. Inouye, J.V. Cathcart, S.A. David, J.A. Horton, and M.L. Santella, Initial Development of Nickel and Nickel-Iron Aluminides for Structural Uses, Report ORNL-6067, Oak Ridge National Laboratory, Tennessee, 1984.

    Book  Google Scholar 

  50. R. Yang, J.A. Leake, and R.W. Cahn, Chromium precipitation from β-Ni(Al, Ti) and γ;’-Ni3(Al, Ti) in the alloy (Ni70Al20Ti10)0.9Cr0.1, Philos. Mag. A, 65(1992), No. 4, p. 961.

    Article  CAS  Google Scholar 

  51. C.T. Liu and V.K. Sikka, Nickel aluminides for structural use, JOM, 38(1986), No. 5, p. 19.

    Article  CAS  Google Scholar 

  52. P. Pérez, P. González, G. Garcés, G. Caruana, and P. Adeva, Microstructure and mechanical properties of a rapidly solidified Ni3Al–Cr alloy after thermal treatments, J. Alloys Compd., 302(2000), No. 1–2, p. 137.

    Article  Google Scholar 

  53. J. Wu, C. Li, Y.C. Liu, Y.T. Wu, Q.Y. Guo, H.J. Li, and H.P. Wang, Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy, Mater. Sci. Eng. A, 743(2019), p. 623.

    Article  CAS  Google Scholar 

  54. J.Q. Li, Y.Y. Peng, J.B. Zhang, S. Jiang, S.P. Yin, J. Ding, Y.T. Wu, J. Wu, X.Q. Chen, X.C. Xia, X. He, and Y.C. Liu, Cyclic oxidation behavior of Ni3Al-based superalloy, Vacuum, 169(2019), art. No. 108938.

  55. P. Subramani and M. Manikandan, Development of gas tungsten arc welding using current pulsing technique to preclude chromium carbide precipitation in aerospace-grade alloy 80A, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 210.

    Article  CAS  Google Scholar 

  56. Y.G. Zhang, Y.F. Han, and M.C. Chaturvedi, TEM studies of ETA carbide precipitate particles in a DS cast Ni3Al base super-alloy, Mater. Charact., 34(1995), No. 3, p. 205.

    Article  CAS  Google Scholar 

  57. X.E. Zhang, H.L. Luo, S.P. Li, X. Cao, and S.Q. Li, Effection of alloying elements on microstructures of MX246 and MX246A Ni3Al-based alloys, J. Iron Steel Res. Int., 14(2007), No. 5, p. 45.

    Article  Google Scholar 

  58. R.N. Wright and J.R. Knibloe, The influence of alloying on the microstructure and mechanical properties of P/M Ni3Al, Acta Metall. Mater., 38(1990), No. 10, p. 1993.

    Article  CAS  Google Scholar 

  59. H. Li, J.T. Guo, M.H. Tan, C. Sun, W.H. Lai, and S.H. Wang, Microstructure and mechanical properties of Ni3Al-Fe based alloy, Acta Metall. Sin. Engl. Ed., 6(1993), No. 1, p. 40.

    Google Scholar 

  60. C. Ai, S.S. Li, H. Zhang, L. Liu, Y. Ma, Y.L. Pei, and S.K. Gong, Effect of withdrawal rate on microstructure and lattice misfit of a Ni3Al based single crystal superalloy, J. Alloys Compd., 592(2014), p. 164.

    Article  CAS  Google Scholar 

  61. P. Li, S.S. Li, and Y.F Han, Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX, Intermetallics, 19(2011), No. 2, p. 182.

    Article  CAS  Google Scholar 

  62. J.T. Wang, H.L. Luo, S.P. Li, and X. Cao, Effect of solution treatment on stress rupture property of MX246A alloy, Mater. Heat Treat., 39(2010), No. 12, p. 155.

    Google Scholar 

  63. C. Ai, M.Q. Ou, X.B. Zhao, Y.L. Pei, H. Zhang, L. Liu, S.S. Li, and S.K. Gong, Effect of heat treatment and long-term age on microstructure of a Ni3Al-based single crystal superalloy, Mater. Res. Innov., 19(2015), Suppl. 4, p. S209.

    Article  CAS  Google Scholar 

  64. J.B. Singh, A. Verma, M.K. Thota, and J.K. Chakravartty, Brittle failure of Alloy 693 at elevated temperatures, Mater. Sci. Eng. A, 616(2014), p. 88.

    Article  CAS  Google Scholar 

  65. Y.F. Li, C. Li, J. Wu, Y.T. Wu, Z.Q. Ma, L.M. Yu, H.J. Li, and Y.C. Liu, Formation of multiply twinned martensite plates in rapidly solidified Ni3Al-based superalloys, Mater. Lett., 250(2019), p. 147.

    Article  CAS  Google Scholar 

  66. J. Wu, C. Li, Y.C. Liu, X.C. Xia, Y.T. Wu, Z.Q. Ma, and H.P. Wang, Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy, Intermetallics, 109(2019), p. 48.

    Article  CAS  Google Scholar 

  67. Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493.

    Article  CAS  Google Scholar 

  68. H.Q. Feng, Z.B. Yang, Y.T. Bai, L. Zhang, and Y.L. Liu, Effect of Cr content and cooling rate on the primary phase of Al-2.5Mn alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1551.

    Article  CAS  Google Scholar 

  69. Y.F. Li, C. Li, Y.T. Wu, J. Wu, Z.Q. Ma, H.J. Li, and Y.C. Liu, Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure, Vacuum, 171(2020), art. No. 109038.

  70. Y.F. Li, C. Li, J. Wu, H.J. Li, Y.C. Liu, and H.P. Wang, Microstructural feature and evolution of rapidly solidified Ni3Al-based superalloys, Acta Metall. Sin. Engl. Lett., 32(2019), No. 6, p. 764.

    Article  CAS  Google Scholar 

  71. X.T. Duan, S.P. Li, H.L. Luo, and J.T. Wang, Heat treatment process for Ni3Al-based wrought superalloy, J. Iron Steel Res., 27(2015), No. 11, p. 60.

    CAS  Google Scholar 

  72. M. Hadi and A.R. Kamali, Investigation on hot workability and mechanical properties of modified IC-221M alloy, J. Alloys Compd., 485(2009), No. 1–2, p. 204.

    Article  CAS  Google Scholar 

  73. A.M. Jokisaari, S.S. Naghavi, C. Wolverton, P.W. Voorhees, and O.G. Heinonen, Predicting the morphologies of γ;’ precipitates in cobalt-based superalloys, Acta Mater., 141(2017), p. 273.

    Article  CAS  Google Scholar 

  74. F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier, Coarsening and dissolution of γ;’ precipitates during solution treatment of AD730™ Ni-based superalloy: Mechanisms and kinetics models, J. Alloys Compd., 658(2016), p. 981.

    Article  CAS  Google Scholar 

  75. M.T. Kim, D.S. Kim, and O.Y. Oh, Effect of γ;’ precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy, Mater. Sci. Eng. A, 480(2008), No. 1–2, p. 218.

    Article  CAS  Google Scholar 

  76. F. Liu and G.C. Yang, Effect of microstructure and γ;’ precipitate from undercooled DD3 superalloy on mechanical properties, J. Mater. Sci., 37(2002), No. 13, p. 2713.

    Article  CAS  Google Scholar 

  77. Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123.

    Article  CAS  Google Scholar 

  78. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  79. J. Wu, C. Li, Y.C. Liu, X.C. Xia, Z.X. Zheng, and H.P. Wang, Precipitation of intersected plate-like γ;’ phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy, Mater. Sci. Eng. A, 767(2019), art. No. 138439.

  80. D. Lee, M.L. Santella, I.M. Anderson, and G.M. Pharr, Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy, Intermetallics, 13(2005), No. 2, p. 187.

    Article  CAS  Google Scholar 

  81. Q.Y. Li, S.Q. Tian, H.C. Yu, N. Tian, Y. Su, and Y. Li, Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy, Mater. Sci. Eng. A, 633(2015), p. 20.

    Article  CAS  Google Scholar 

  82. X.M. Dong, X.L. Zhang, K. Du, Y.Z. Zhou, T. Jin, and H.Q. Ye, Microstructure of Carbides at Grain Boundaries in Nickel Based Superalloys, J. Mater. Sci. Technol., 28(2012), No. 11, p. 1031.

    Article  CAS  Google Scholar 

  83. X.C. Xia, Y.Y. Peng, J. Ding, C. Li, J.B. Zhang, X.G. Chen, X. He, S.P. Yin, and Y.C. Liu, Precipitation and growth behavior of gamma prime phase in Ni3Al-based superalloy under thermal exposure, J. Mater. Sci., 54(2019), No. 20, p. 13368.

    Article  CAS  Google Scholar 

  84. D.Y. Lee, An investigation of thermal aging effects on the mechanical properties of a Ni3Al-based alloy by nanoindentation, J. Alloys Compd., 480(2009), No. 2, p. 347.

    Article  CAS  Google Scholar 

  85. C.J. Li, G. Guo, Z.J. Yuan, W.D. Xuan, X. Li, Y.B. Zhong, and Z.M. Ren, Chemical segregation and coarsening of γ;’ precipitates in Ni-based superalloy during heat treatment in alternating magnetic field, J. Alloys Compd., 720(2017), p. 272.

    Article  CAS  Google Scholar 

  86. H.B. Motejadded, M. Soltanieh, and S. Rastegari, Coarsening kinetics of γ;’ precipitates in dendritic regions of a Ni3Al base alloy, J. Mater. Sci. Technol., 28(2012), No. 3, p. 221.

    Article  CAS  Google Scholar 

  87. X.C. Wu, Y.S. Li, W. Liu, Z.Y. Hou, and M.Q. Huang, Dynamics evolution of γ;’ precipitates size and composition interface between γ/γ;’ phases in Ni–Al alloy at different aging temperatures, Rare Met., (2016), p. 1.

  88. L. Pichon, J.B. Dubois, S. Chollet, F. Larek, J. Cormie, and C. Templier, Low temperature nitriding behaviour of Ni3Al-like γ;’ precipitates in nickel-based superalloys, J. Alloys Compd., 771(2019), p. 176.

    Article  CAS  Google Scholar 

  89. M. Li, J.X. Song, S.S. Li, and Y.F. Han, Effects of long-term aging at 1070°C on microstructure of Ni3Al-base single-crystal alloy IC6SX, Rare Met., 30(2011), p. 345.

    Article  CAS  Google Scholar 

  90. J. Wu, C. Li, Y.C. Liu, Y.T. Wu, X.C. Xia, Y.F. Li, and H.P. Wang, Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy, Mater. Sci. Eng. A, 763(2019), art. No. 138158.

  91. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Coarsening behavior of γ;’ precipitates in the γ;’-γ area of a Ni3Al-based alloy, J. Alloys Compd., 771(2019), p. 526.

    Article  CAS  Google Scholar 

  92. J. Lapin and A. Važo, Coarsening kinetics of α- and γ;’-precipit-ates in a multiphase intermetallic Ni–Al–Cr–Ti type alloy with additions of Mo and Zr, Scripta Mater., 50(2004), No. 5, p. 571.

    Article  CAS  Google Scholar 

  93. J. Lapin, T. Pelachová, and O. Bajana, Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni–Al–Cr–Ti alloy with β-γ’-γ-α structure, Intermetallics, 8(2000), No. 12, p. 1417.

    Article  CAS  Google Scholar 

  94. D. Lee and M.L. Santella, Thermal aging effects on the mechanical properties of as-cast Ni3Al-based alloy, Mater. Sci. Eng. A, 428(2006), No. 1–2, p. 196.

    Article  CAS  Google Scholar 

  95. Y.F. Han, S.H. Li, Y. Jin, and M.C. Chaturvedi, Effect of 900–1150 °C aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6, Mater. Sci. Eng. A, 192–193(1995), p. 899.

    Article  Google Scholar 

  96. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Effect of initial microstructure on the hot deformation behavior of a Ni3Al-based alloy, Intermetallics, 113(2019), art. No. 106584.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52075373 and 52034004) and the National High Technology Research and Development Program of China (No. 2015AA042504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Li or Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yt., Li, C., Li, Yf. et al. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review. Int J Miner Metall Mater 28, 553–566 (2021). https://doi.org/10.1007/s12613-020-2177-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2177-y

Keywords

Navigation