Skip to main content

Advertisement

Log in

Polymer joining techniques state of the art review

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Modern products and structures require efficient material joining processes for their construction, able to combine similar or dissimilar materials, which almost always includes high-performance polymers. To design such joints, it is necessary to first understand the techniques currently used in this technological field and how they can be improved using advanced technological joining processes. In this manuscript, a review of several polymer-joining techniques is made, highlighting the recent technological advances in this field. The search for improved mechanical performance and lower costs has led to the development of new, high-performance engineering polymers, which require highly specific joining processes. These can include adhesive bonding, mechanical joining, welding or a combination of different processes, a technique known as hybrid joining. Several experimental works available in the literature have proven the validity of these techniques, although optimization processes are necessary to attain maximum performance. Additionally, extensive numerical with different methods and models has been carried out to better understand the processes and support parametric analysis. The intent of this work is to review studies on the most important polymer bonding techniques, the numerical models applied to simulate these techniques, the use of hybrid joints and describe promising techniques that are being developed and proposed for future use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. da Silva, L.F., A. Öchsner, R.D. Adams (2011) Handbook of adhesion technology Springer Science & Business Media

  2. Marczis B, Czigány T (2002) Polymer joints. Periodica Polytechnica Mechanical Engineering 46(2):117–126

    Google Scholar 

  3. Visco A, Scolaro C, Quattrocchi A, Montanini R (2018) Response to fatigue stress of biomedical grade polyethylene joints welded by a diode laser. J Mech Behav Biomed Mater 86:390–396

    Article  CAS  Google Scholar 

  4. Amanat N, James NL, McKenzie DR (2010) Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices. Med Eng Phys 32(7):690–699

    Article  Google Scholar 

  5. Banea MD, da Silva LFM, Campilho RDSG, Sato C (2014) Smart adhesive joints: an overview of recent developments. J Adhes 90(1):16–40

    Article  CAS  Google Scholar 

  6. Evers F, Schöppner V, Lakemeyer P (2017) The influence of welding processes on the weld strength of flame-retardant materials. Welding in the World 61(1):161–170

    Article  Google Scholar 

  7. Fink JK (2014) High performance polymers William Andrew

  8. Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35(2):227–236

    Article  CAS  Google Scholar 

  9. Ashby MF, Cebon D (1993) Materials selection in mechanical design. Le Journal de Physique IV 3(C7):C7-1–C7-9

    Google Scholar 

  10. Dangel, R. (2004) et al. Development of a low-cost low-loss polymer waveguide technology for parallel optical interconnect applications. In Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities 1(1) 29-30

  11. Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Performance Polymers 15(1):3–45

    Article  CAS  Google Scholar 

  12. Amancio-Filho S, Dos Santos J (2009) Joining of polymers and polymer–metal hybrid structures: recent developments and trends. Polym Eng Sci 49(8):1461–1476

    Article  CAS  Google Scholar 

  13. Grewell D, Benatar A (2007) Welding of plastics: fundamentals and new developments. Int Polym Process 22(1):43–60

    Article  CAS  Google Scholar 

  14. Kah P et al (2014) Techniques for joining dissimilar materials: metals and polymers. Rev Adv Mater Sci 36(2):152–164

    CAS  Google Scholar 

  15. Troughton, M.J. (2008) Handbook of plastics joining: a practical guide William Andrew

  16. Rasmussen, P.A., J.M. Brown (1997) Integral thermoset/thermoplastic composite joint, Google Patents

  17. Schieler O, Beier U (2016) Induction welding of hybrid thermoplastic-thermoset composite parts. Applied Science and Engineering Progress 9(1):27–36

    Google Scholar 

  18. da Silva, L.F.M., A. Öchsner (2008) Modeling of adhesively bonded joints Springer

  19. Clifton S, Thimmappa BHS, Selvam R, Shivamurthy B (2020) Polymer nanocomposites for high-velocity impact applications-a review. Composites Communications 17:72–86

    Article  Google Scholar 

  20. El-Abbassi FE et al (2020) A review on alfa fibre (Stipa tenacissima L.): from the plant architecture to the reinforcement of polymer composites. Composites Part A: Applied Science and Manufacturing. A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites. 128:105677

  21. Notario B, Pinto J, Rodriguez-Perez MA (2016) Nanoporous polymeric materials: a new class of materials with enhanced properties. Prog Mater Sci 78:93–139

    Article  CAS  Google Scholar 

  22. Pilate F, Toncheva A, Dubois P, Raquez JM (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294

    Article  CAS  Google Scholar 

  23. Supian A et al (2018) Hybrid reinforced thermoset polymer composite in energy absorption tube application: a review. Defence Technology 14(4):291–305

    Article  Google Scholar 

  24. Wu H, Fahy WP, Kim S, Kim H, Zhao N, Pilato L, Kafi A, Bateman S, Koo JH (2020) Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci 111:100638

    Article  CAS  Google Scholar 

  25. Xia L, Zhang Z, Hong CY, You YZ (2020) Synthesis of copolymer via hybrid polymerization: from random to well-defined sequence. Eur Polym J 122:109374

    Article  CAS  Google Scholar 

  26. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Advanced Industrial and Engineering Polymer Research 3(1):27–35

    Article  Google Scholar 

  27. Kinloch, A.J. (2012) Adhesion and adhesives: science and technology Springer Science & Business Media

  28. da Silva LF, Campilho RD (2012) Advances in numerical modelling of adhesive joints. In Advances in numerical modeling of Adhesive Joints 1:93

    Google Scholar 

  29. Ravi-Kumar S, Lies B, Zhang X, Lyu H, Qin H (2019) Laser ablation of polymers: a review. Polym Int 68(8):1391–1401

    Article  CAS  Google Scholar 

  30. Wu S (1982) Polymer Interface and Adhesion:630

  31. Hartshorn, S.R. (2012) Structural adhesives: chemistry and technology Springer Science & Business Media

  32. Arteiro A, Furtado C, Catalanotti G, Linde P, Camanho PP (2020) Thin-ply polymer composite materials: a review. Compos A Appl Sci Manuf 132:105777

    Article  CAS  Google Scholar 

  33. Friedrich S et al (2014) Hybrid joining technology-a new method for joining thermoplastic-metal-mixed components. in AIP Conference Proceedings. American Institute of Physics 121(1593):121–127

    Google Scholar 

  34. Kweon J-H, Jung JW, Kim TH, Choi JH, Kim DH (2006) Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos Struct 75(1-4):192–198

    Article  Google Scholar 

  35. Machado J et al (2018) Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industry. Compos Struct 185:373–380

    Article  Google Scholar 

  36. Machado J et al (2018) Numerical study of impact behaviour of mixed adhesive single lap joints for the automotive industry. Int J Adhes Adhes 84:92–100

    Article  CAS  Google Scholar 

  37. Machado J et al (2020) Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditions. Int J Adhes Adhes 96:102501

    Article  CAS  Google Scholar 

  38. Ueda M, Miyake S, Hasegawa H, Hirano Y (2012) Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet. Compos Struct 94(11):3388–3393

    Article  Google Scholar 

  39. Yadav A, Kaushik A, Mishra YK, Agrawal V, Ahmadivand A, Maliutina K, Liu Y, Ouyang Z, Dong W, Cheng GJ (2020) Fabrication of 3D polymeric photonic arrays and related applications. Materials Today Chemistry 15:100208

    Article  CAS  Google Scholar 

  40. Butt, H.-J., M. Kappl (2010) Surface and interfacial forces Wiley Online Library

  41. Kandalam U, Bouvier AJ, Casas SB, Smith RL, Gallego AM, Rothrock JK, Thompson JY, Huang CYC, Stelnicki EJ (2013) Novel bone adhesives: a comparison of bond strengths in vitro. Int J Oral Maxillofac Surg 42(9):1054–1059

    Article  CAS  Google Scholar 

  42. Maurer P, Bekes K, Gernhardt CR, Schaller HG, Schubert J (2004) Comparison of the bond strength of selected adhesive dental systems to cortical bone under in vitro conditions. Int J Oral Maxillofac Surg 33(4):377–381

    Article  CAS  Google Scholar 

  43. Nascimento PLMM et al (2017) Addition of ammonium-based methacrylates to an experimental dental adhesive for bonding metal brackets: carious lesion development and bond strength after cariogenic challenge. Am J Orthod Dentofac Orthop 151(5):949–956

    Article  Google Scholar 

  44. Szymczyk P et al (2020) A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering 40(2):624–638

    Article  Google Scholar 

  45. Villanueva JGV et al (2019) Bio-adhesion evaluation of a chitosan-based bone bio-adhesive. Int J Adhes Adhes 92:80–88

    Article  CAS  Google Scholar 

  46. Thakkar R, Thakkar R, Pillai A, Ashour EA, Repka MA (2020) Systematic screening of pharmaceutical polymers for hot melt extrusion processing: a comprehensive review. Int J Pharm 576:118989

    Article  CAS  Google Scholar 

  47. Xie T, Kao W, Sun L, Wang J, Dai G, Li Z (2020) Preparation and characterization of self-matting waterborne polymer–an overview. Prog Org Coat 142:105569

    Article  CAS  Google Scholar 

  48. Bagherzadeh A, Jamshidi M, Monemian F (2020) Investigating mechanical and bonding properties of micro/nano filler containing epoxy adhesives for anchoring steel bar in concrete. Constr Build Mater 240:117979

    Article  CAS  Google Scholar 

  49. Cho BH, Nam BH, Seo S, Kim J, An J, Youn H (2019) Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures. Constr Build Mater 221:491–500

    Article  Google Scholar 

  50. Li Z, Olah A, Baer E (2020) Micro-and nano-layered processing of new polymeric systems. Prog Polym Sci 102:101210

    Article  CAS  Google Scholar 

  51. Nguyen KT et al (2020) Fire safety of composites in prefabricated buildings: from fibre reinforced polymer to textile reinforced concrete. Compos Part B 187:107815

    Article  CAS  Google Scholar 

  52. Rocha AV et al (2020) Fatigue crack growth analysis of different adhesive systems: effects of mode mixity and load level. Fatigue Fract Eng Mater Struct 43(2):330–341

    Article  Google Scholar 

  53. Shi J-W, Cao W-H, Wu Z-S (2019) Effect of adhesive properties on the bond behaviour of externally bonded FRP-to-concrete joints. Compos Part B 177:107365

    Article  CAS  Google Scholar 

  54. Zhang X, Bai L, Sun J, Li Z, Jia Z, Gu J (2020) Design and fabrication of PVAc-based inverted core/shell (ICS) structured adhesives for improved water-resistant wood bonding performance: II. Influence of copolymerizing-grafting sequential reaction. International Journal of Adhesion and Adhesives 99:102571

    Article  CAS  Google Scholar 

  55. Amancio Filho ST, LA Blaga (2018) Joining of polymer-metal hybrid structures: principles and applications John Wiley & Sons

  56. Chanda, M. (2017) Plastics technology handbook CRC press

  57. Collett BM (1972) A review of surface and interfacial adhesion in wood science and related fields. Wood Sci Technol 6(1):1–42

    Article  CAS  Google Scholar 

  58. da Silva, L.F., A. Pirondi, and A. Öchsner (2011) Hybrid adhesive joints 6 Springer Science & Business Media

  59. El Mansouri N-E, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24(1):8–16

    Article  CAS  Google Scholar 

  60. Ludwig, C.H., A.W. Stout (1971) Adhesive composition from lignosulfonate phenoplasts Google Patents

  61. Valasamudram V et al (2020) Study and evaluation of cold joining on metals and non metals combinations (ss, al, acr) using polymer based adhesive. Materials Today: Proceedings 27(3):2806–2810

    CAS  Google Scholar 

  62. Weitzenböck, J.R. (2012) Adhesives in marine engineering Elsevier

  63. Kinloch A (1980) The science of adhesion. J Mater Sci 15(9):2141–2166

    Article  CAS  Google Scholar 

  64. Higgins A (2000) Adhesive bonding of aircraft structures. Int J Adhes Adhes 20(5):367–376

    Article  CAS  Google Scholar 

  65. Rotheiser, J. (2015) Joining of plastics: handbook for designers and engineers Carl Hanser Verlag GmbH Co KG

  66. Gierenz, G. and W. Karmann (2008) Adhesives and adhesive tapes John Wiley & Sons

  67. Wu, S. (1982) Polymer interface and adhesion 188. M. Dekker New York

  68. Butt, H.-J., K. Graf, and M. Kappl (2013) Physics and chemistry of interfaces John Wiley & Sons

  69. Hoong YB, Paridah MT, Loh YF, Jalaluddin H, Chuah LA (2011) A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. Int J Adhes Adhes 31(3):164–167

    Article  CAS  Google Scholar 

  70. Zhang X et al (2020) Design and fabrication of PVAc-based inverted core/shell (ICS) structured adhesives for improved water-resistant wood bonding performance: I. Influence of chemical grafting International Journal of Adhesion and Adhesives 98:1–23

    Google Scholar 

  71. Da Silva, L.F., et al. (2012) Testing adhesive joints: best practices John Wiley & Sons

  72. Ebnesajjad, S. (2010) Handbook of adhesives and surface preparation: technology, applications and manufacturing William Andrew

  73. Molitor P, Barron V, Young T (2001) Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int J Adhes Adhes 21(2):129–136

    Article  CAS  Google Scholar 

  74. Sabreen S (2018) Plasma surface pretreatments of polymers for improved adhesion bonding. Tecnology 1(1):1–5

    Google Scholar 

  75. Zhang D, Sun Q, Wadsworth LC (1998) Mechanism of corona treatment on polyolefin films. Polym Eng Sci 38(6):965–970

    Article  CAS  Google Scholar 

  76. Nečasová B, Liška P, Kelar J, Šlanhof J (2019) Comparison of adhesive propertiesEEHUKUJ88887666P976311134660-0 of polyurethane adhesive system and wood-plastic composites with different polymers after mechanical, chemical and physical surface treatment. Polymers 11(3):397

    Article  CAS  Google Scholar 

  77. Bukhari MD et al (2020) Adhesion theories and effect of surface roughness on energy estimation and wettability of polymeric composites bonded joints: a-review. VW Applied Sciences 2(1):74–86

    Article  Google Scholar 

  78. Jin X, Strueben J, Heepe L, Kovalev A, Mishra YK, Adelung R, Gorb SN, Staubitz A (2012) Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers. Adv Mater 24(42):5676–5680

    Article  CAS  Google Scholar 

  79. da Silva LFM, Das Neves PJC, Adams RD, Spelt JK (2009) Analytical models of adhesively bonded joints—Part I: Literature survey. Int J Adhes Adhes 29(3):319–330

    Article  CAS  Google Scholar 

  80. de Moura M et al (2008) Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints. Int J Adhes Adhes 28(8):419–426

    Article  CAS  Google Scholar 

  81. Braga DF, da Silva LF, Moreira PM (2016) Single lap joints numerical modelling and comparison with experimental testing. U Porto Journal of Engineering 2(1):11–20

    Article  Google Scholar 

  82. Adams RD, Peppiatt NA (1974) Stress analysis of adhesive-bonded lap joints. The Journal of Strain Analysis for Engineering Design 9(3):185–196

    Article  Google Scholar 

  83. Crocombe A, Adams, RD (1981) Influence of the spew fillet and other parameters on the stress distribution in the single lap joint. J Adhes 13(2):141–155

    Article  Google Scholar 

  84. da Silva LFM, Rodrigues TNSS, Figueiredo MAV, de Moura MFSF, Chousal JAG (2006) Effect of adhesive type and thickness on the lap shear strength. J Adhes 82(11):1091–1115

    Article  CAS  Google Scholar 

  85. Silva D et al (2018) Experimental and numerical analysis of scarf aluminum adhesive joints. Procedia Manufacturing 17:705–712

    Article  Google Scholar 

  86. Oliveira J et al (2019) Adhesive thickness effects on the mixed-mode fracture toughness of bonded joints. J Adhes:1–21

  87. Sadeghi MK et al (2020) Failure load prediction of adhesively bonded single lap joints by using various FEM techniques. Int J Adhes Adhes 97:1–32

    Article  Google Scholar 

  88. Matos-Pérez CR, White JD, Wilker JJ (2012) Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 134(22):9498–9505

    Article  CAS  Google Scholar 

  89. Hsiao K-T, Alms J, Advani SG (2003) Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14(7):791 793

    Article  CAS  Google Scholar 

  90. Machado J, Nunes PDP, Marques EAS, Campilho RDSG, da Silva LFM (2020) Numerical study of mode I fracture toughness of carbon-fibre-reinforced plastic under an impact load. Proceedings of the Institution of Mechanical Engineers Part L. Journal of Materials: Design and Applications 234(1):12–20

    CAS  Google Scholar 

  91. Banea M et al (2020) The effect of environment and fatigue loading on the behaviour of TEPs-modified adhesives. J Adhes 96(1-4):423–436

    Article  CAS  Google Scholar 

  92. Akhavan-Safar A et al (2020) Influence of microcork particles on the lap shear strength of an epoxy adhesive subjected to fatigue loading and different environmental conditions. Proceedings of the Institution of Mechanical Engineers Part L. Journal of Materials: Design and Applications 0:1–8

    CAS  Google Scholar 

  93. Borges C et al (2020) Review on the effect of moisture and contamination on the interfacial properties of adhesive joints. Proc Inst Mech Eng C J Mech Eng Sci 0:1–23

    Google Scholar 

  94. Sugiman S, Crocombe A, Aschroft I (2013) Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints. Int J Adhes Adhes 40:224–237

    Article  CAS  Google Scholar 

  95. Rocha A et al (2020) Numerical analysis of mixed-mode fatigue crack growth of adhesive joints using CZM. Theor Appl Fract Mech (106):102493

  96. Monteiro J, Akhavan-Safar A, Carbas R, Marques E, Goyal R, El-zein M, Silva LFM, Influence of mode mixity, loading conditions on the fatigue crack growth behaviour of an epoxy adhesive (2020) Fatigue Fract Eng Mater Struct 43(2):308–316

    Article  Google Scholar 

  97. Rocha A, Akhavan-Safar A, Carbas R, Marques EAS, Goyal R, El-Zein M, da Silva LFM (2020) Paris law relations for an epoxy-based adhesive. Proceedings of the Institution of Mechanical Engineers Part L. Journal of Materials: Design and Applications 234(2):291–299

    CAS  Google Scholar 

  98. Ibrahim R, Pettit C (2005) Uncertainties and dynamic problems of bolted joints and other fasteners. J Sound Vib 279(3-5):857–936

    Article  Google Scholar 

  99. Ageorges C, L Ye (2002) State of the art in fusion bonding of polymer composites, in Fusion Bonding of Polymer Composites Springer 7-64

  100. Karpat F, Kucukoglu A (2017) A review of the mechanical joining techniques for thermoplastics. Juniper Online J Mater Sci 3(2):6–7

    Google Scholar 

  101. Vinson JR (1989) Mechanical fastening of polymer composites. Polym Eng Sci 29(19):1332–1339

    Article  CAS  Google Scholar 

  102. Thoppul SD, Finegan J, Gibson RF (2009) Mechanics of mechanically fastened joints in polymer–matrix composite structures–a review. Compos Sci Technol 69(3-4):301–329

    Article  CAS  Google Scholar 

  103. Arora D (2003) Rapid Strengthening of reinforced concrete bridge with mechanically fastened-fiber reinforced polymer strips. Citeseer. 1(1):1–166

    Google Scholar 

  104. Lambiase F, Durante M, Di Ilio A (2016) Fast joining of aluminum sheets with Glass Fiber Reinforced Polymer (GFRP) by mechanical clinching. J Mater Process Technol 236:241–251

    Article  CAS  Google Scholar 

  105. Khoo T et al (2008) Wood filler-recycled polypropylene (WF-RPP) composite pallet: study of fastening method. J Reinf Plast Compos 27(16-17):1723–1731

    Article  CAS  Google Scholar 

  106. Alves L, Silva CMA, Santos PD, Martins PAF (2016) Mechanical joining of PVC tubes by their ends. Proceedings of the Institution of Mechanical Engineers Part L. Journal of Materials: Design and Applications 230(4):860–868

    CAS  Google Scholar 

  107. Bragança I et al (2017) Lightweight joining of polymer and polymer-metal sheets by sheet-bulk forming. J Clean Prod 145:98–104

    Article  CAS  Google Scholar 

  108. Mackerle J (2003) Finite element analysis of fastening and joining: A bibliography (1990–2002). Int J Press Vessel Pip 80(4):253–271

    Article  Google Scholar 

  109. Bhonge PS, Foster BD, Lankarani HM (2011) Finite element modeling and analysis of structural joints using nuts and bolts. in ASME 2011 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection 1(1):1–11

    Google Scholar 

  110. He X, Gu F, Ball A (2013) Fatigue behaviour of fastening joints of sheet materials and finite element analysis. Advances in mechanical engineering 5:658219

    Article  Google Scholar 

  111. Iancu F, Ding X, Cloud GL, Raju BB (2005) Three-dimensional investigation of thick single-lap bolted joints. Exp Mech 45(4):351–358

    Article  Google Scholar 

  112. Nassar SA, Virupaksha VL, Ganeshmurthy S (2007) Effect of bolt tightness on the behavior of composite joints 129(1):43–51

    CAS  Google Scholar 

  113. Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Article  CAS  Google Scholar 

  114. Boon T, Thomas WM, Temple-Smith P Friction welding apparatus and method. 2001. Google Patents

  115. Inaniwa S, et al. (2013) Application of friction stir welding for several plastic materials. in Proceedings of the 1st international joint symposium on joining and welding. Elsevier 137-142

  116. Besharati-Givi, M.-K., P. Asadi (2014) Advances in friction-stir welding and processing Elsevier

  117. Lohwasser, D., Z. Chen (2009) Friction stir welding: from basics to applications Elsevier

  118. Huang Y, Meng X, Xie Y, Wan L, Lv Z, Cao J, Feng J (2018) Friction stir welding/processing of polymers and polymer matrix composites. Compos A: Appl Sci Manuf 105:235–257

    Article  CAS  Google Scholar 

  119. Simões F, Rodrigues D (2014) Material flow and thermo-mechanical conditions during friction stir welding of polymers: literature review, experimental results and empirical analysis. Mater Des 59:344–351

    Article  CAS  Google Scholar 

  120. DebRoy T, Bhadeshia H (2010) Friction stir welding of dissimilar alloys–a perspective. Sci Technol Weld Join 15(4):266–270

    Article  Google Scholar 

  121. Shunmugasundaram M, Praveen Kumar A, Maneiah D (2019) An experimental analysis and process parameter optimization on friction stir welded dissimilar alloys. International Journal of Mechanical and Production Engineering Research and Development 9(2):407–414

    Article  Google Scholar 

  122. Shen C, Zhang J, Ge J (2011) Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld. J Environ Sci 23:S32–S35

    Article  Google Scholar 

  123. Gupta SK, Pandey K, Kumar R (2018) Multi-objective optimization of friction stir welding process parameters for joining of dissimilar AA5083/AA6063 aluminum alloys using hybrid approach. Proceedings of the Institution of Mechanical Engineers Part L. Journal of Materials: Design and Applications 232(4):343–353

    CAS  Google Scholar 

  124. Shunmugasundaram M et al (2020) Optimization of process parameters of friction stir welded dissimilar AA6063 and AA5052 aluminum alloys by Taguchi technique. Materials Today: Proceedings 27(2):871–876

    CAS  Google Scholar 

  125. Ratanathavorn W, Melander A (2015) Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci Technol Weld Join 20(3):222–228

    Article  CAS  Google Scholar 

  126. Khodabakhshi F, Haghshenas M, Chen J, Shalchi AB, Li J, Gerlich AP (2017) Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci Technol Weld Join 22(3):182–190

    Article  CAS  Google Scholar 

  127. Patel AR, Kotadiya DJ, Kapopara JM, Dalwadi CG, Patel NP, Rana HG (2018) Investigation of mechanical properties for hybrid joint of aluminium to polymer using friction stir welding (FSW). Mater Today Proc 5:4242–4249

    Article  CAS  Google Scholar 

  128. Patel AR, Dalwadi CG, Rana HG (2016) A review: dissimilar material joining of metal to polymer using friction stir welding (FSW). Int J Sci Technol Eng 2(10):702–706

    Google Scholar 

  129. Huang Y, Meng X, Xie Y, Li J, Wan L (2018) Joining of carbon fiber reinforced thermoplastic and metal via friction stir welding with co-controlling shape and performance. Compos A: Appl Sci Manuf 112:328–336

    Article  CAS  Google Scholar 

  130. Gemme F, Verreman Y, Dubourg L, Jahazi M (2010) Numerical analysis of the dwell phase in friction stir welding and comparison with experimental data. Mater Sci Eng A 527(16-17):4152–4160

    Article  CAS  Google Scholar 

  131. Eslami, S., Farahani B.V., Tavares P.J., Moreira P.M.G.P., Fatigue behaviour evaluation of dissimilar polymer joints: friction stir welded, single and double-rivets. Int J Fatigue, 2018. 113: p. 351-358.

  132. Adibeig MR, Hassanifard S, Vakili-Tahami F, Hattel JH (2018) Experimental investigation of tensile strength of friction stir welded butt joints on PMMA. Materials Today Communications 17:238–245

    Article  CAS  Google Scholar 

  133. Eslami S, Ramos T, Tavares PJ, Moreira PMGP (2015) Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Engineering 114:199–207

    Article  CAS  Google Scholar 

  134. Kredegh A, Sedmak A, Grbovic A, Milosevic N, Danicic D (2016) Numerical simulation of fatigue crack growth in friction stir welded T joint made of Al 2024 T351 alloy. Procedia Structural Integrity 2:3065–3072

    Article  Google Scholar 

  135. Gao J, Li C, Shilpakar U, Shen Y (2015) Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Mater Des 86:289–296

    Article  CAS  Google Scholar 

  136. Kim J-H, Jo D-S, Kim B-M (2017) Hardness prediction of weldment in friction stir welding of AA6061 based on numerical approach. Procedia engineering 207:586–590

    Article  CAS  Google Scholar 

  137. Chanakyan C et al (2019) Friction stir processing (FSP) of numerical study based on design of experiment-review. Materials Today: Proceedings 27(2):748–751

    Google Scholar 

  138. He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66

    Article  Google Scholar 

  139. Padmanaban R, Kishore VR, Balusamy V (2014) Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys. Procedia Engineering 97:854–863

    Article  CAS  Google Scholar 

  140. Zhou X, Pan W, MacKenzie D (2013) Identifying friction stir welding process parameters through coupled numerical and experimental analysis. Int J Press Vessel Pip 108:2–6

    Article  Google Scholar 

  141. Zhao PC et al (2018) Numerical simulation of friction stir butt-welding of 6061 aluminum alloy. Transactions of Nonferrous Metals Society of China 28(6):1216–1225

    Article  CAS  Google Scholar 

  142. Katayama, S. (2013) Handbook of laser welding technologies Elsevier

  143. Dawes, C. (1992) Laser welding: a practical guide Woodhead Publishing

  144. Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser welding. Phys Procedia 39:8–16

    Article  Google Scholar 

  145. Juhl TB, Bach D, Larson RG, Christiansen JC, Jensen EA (2013) Predicting the laser weldability of dissimilar polymers. Polymer 54(15):3891–3897

    Article  CAS  Google Scholar 

  146. Quazi M et al (2020) Current research and development status of dissimilar materials laser welding of titanium and its alloys. Opt Laser Technol 126:106090

    Article  CAS  Google Scholar 

  147. Antony K, T Rakeshnath (2020) Dissimilar laser welding of commercially pure copper and stainless steel 316 L. Materials Today: Proceedings

  148. Yilbas BS, Shaukat MM, Afzal AA, Ashraf F (2020) Life cycle analysis for laser welding of alloys. Opt Laser Technol 126:106064

    Article  CAS  Google Scholar 

  149. Sakamiti GP, Siqueira RHM, Carvalho SM, Meireles JB, Lima MSF (2019) Weldability of a zirconium alloy comparing resistance and pulsed laser methods. Nuclear Materials and Energy 20:100693

    Article  Google Scholar 

  150. Zhang Z, Shan J, Tan X (2018) Evaluation of the CFRP grafting and its influence on the laser joining CFRP to aluminum alloy. J Adhes Sci Technol 32(4):390–406

    Article  CAS  Google Scholar 

  151. Rodríguez-Vidal E, Sanz C, Lambarri J, Quintana I (2018) Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt Laser Technol 104:73–82

    Article  CAS  Google Scholar 

  152. Tao W, Su X, Chen Y, Tian Z (2019) Joint formation and fracture characteristics of laser welded CFRP/TC4 joints. J Manuf Process 45:1–8

    Article  Google Scholar 

  153. Wahba M, Kawahito Y, Katayama S (2011) Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate. J Mater Process Technol 211(6):1166–1174

    Article  CAS  Google Scholar 

  154. Katayama S, Kawahito Y (2008) Laser direct joining of metal and plastic. Scr Mater 59(12):1247–1250

    Article  CAS  Google Scholar 

  155. Lambiase F, Genna S, Kant R (2018) A procedure for calibration and validation of FE modelling of laser-assisted metal to polymer direct joining. Opt Laser Technol 98:363–372

    Article  Google Scholar 

  156. Hirsch J et al (1998) Axisymmetric laser welding of ceramics: comparison of experimental and finite element results. Opt Lasers Eng 29(6):465–484

    Article  Google Scholar 

  157. Song L, Ma J, Zhang Q, Shen Z (2019) Laser melted oxide ceramics: multiscale structural evolution with non-equilibrium features. J Mater 5(3):436–445

    Google Scholar 

  158. de Pablos-Martín A, Lorenz M, Grundmann M, Höche T (2017) Laser welding of fused silica glass with sapphire using a non-stoichiometric, fresnoitic Ba2TiSi2O8· 3 SiO2 thin film as an absorber. Opt Laser Technol 92:85–94

    Article  CAS  Google Scholar 

  159. Duley W, Mueller R (1992) CO2 laser welding of polymers. Polym Eng Sci 32(9):582–585

    Article  CAS  Google Scholar 

  160. Jansson A et al (2003) The effect of parameters on laser transmission welding of polymers. in International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America 609(1):2–12

    Google Scholar 

  161. Van de Ven JD (2007) and A.G. Erdman, Laser transmission welding of thermoplastics—Part I: Temperature and pressure modeling 129(5):849–858

    Google Scholar 

  162. Van de Ven JD, Erdman AG (2007) Laser transmission welding of thermoplastics—Part II: experimental model validation 129(5):859–867

    Google Scholar 

  163. Nonhof C (1994) Laser welding of polymers. Polym Eng Sci 34(20):1547–1549

    Article  CAS  Google Scholar 

  164. Wissman LY (2007) Method for laser welding flexible polymers. Google Patents

  165. Hilton PA, Jones I, Kennish Y (2003) Transmission laser welding of plastics. in First International Symposium on High-Power Laser Macroprocessing. International Society for Optics and Photonics 4831(1):1–9

    Google Scholar 

  166. Hubeatir KA (2020) Laser transmission welding of PMMA using IR semiconductor laser complemented by the Taguchi method and grey relational analysis. Materials Today: Proceedings 20:466–473

    CAS  Google Scholar 

  167. Taha Z et al (2009) Mathematical modeling of laser-assisted transmission lap welding of polymers. Scr Mater 60(8):663–666

    Article  CAS  Google Scholar 

  168. Acherjee B, Kuar AS, Mitra S, Misra D (2012) Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study. Opt Laser Technol 44(3):514–521

    Article  CAS  Google Scholar 

  169. Casalino G, Ghorbel E (2008) Numerical model of CO2 laser welding of thermoplastic polymers. journal of materials processing technology. 207(1-3):63–71

  170. Ruotsalainen S, Laakso P, Kujanpää V (2015) Laser welding of transparent polymers by using quasi-simultaneous beam off-setting scanning technique. Phys Procedia 78:272–284

    Article  CAS  Google Scholar 

  171. Villar M, Garnier C, Chabert F, Nassiet V, Samélor D, Diez JC, Sotelo A, Madre MA (2018) In-situ infrared thermography measurements to master transmission laser welding process parameters of PEKK. Opt Lasers Eng 106:94–104

    Article  Google Scholar 

  172. Brodhun J, Blass D, Dilger K (2018) Laser transmission welding of thermoplastic fasteners: influence of temperature distribution in a scanning based process. Procedia CIRP 74:533–537

    Article  Google Scholar 

  173. Speka M, Matteï S, Pilloz M, Ilie M (2008) The infrared thermography control of the laser welding of amorphous polymers. NDT & E International 41(3):178–183

    Article  CAS  Google Scholar 

  174. Ilie M, Kneip JC, Matteï S, Nichici A, Roze C, Girasole T (2007) Through-transmission laser welding of polymers–temperature field modeling and infrared investigation. Infrared Phys Technol 51(1):73–79

    Article  Google Scholar 

  175. Schmailzl A, Käsbauer J, Martan J, Honnerová P, Schäfer F, Fichtl M, Lehrer T, Tesař J, Honner M, Hierl S (2020) Measurement of core temperature through semi-transparent polyamide 6 using scanner-integrated pyrometer in laser welding. Int J Heat Mass Transf 146:118814

    Article  CAS  Google Scholar 

  176. Schmitt R, Mallmann G, Devrient M, Schmidt M (2014) 3D polymer weld seam characterization based on optical coherence tomography for laser transmission welding applications. Phys Procedia 56:1305–1314

    Article  CAS  Google Scholar 

  177. Chen M, Zak G, Bates PJ (2011) Effect of carbon black on light transmission in laser welding of thermoplastics. J Mater Process Technol 211(1):43–47

    Article  CAS  Google Scholar 

  178. Rodríguez-Vidal E, Quintana I, Gadea C (2014) Laser transmission welding of ABS: effect of CNTs concentration and process parameters on material integrity and weld formation. Opt Laser Technol 57:194–201

    Article  CAS  Google Scholar 

  179. Gisario A, Veniali F, Barletta M, Tagliaferri V, Vesco S (2017) Laser transmission welding of poly (ethylene terephthalate) and biodegradable poly (ethylene terephthalate)–based blends. Opt Lasers Eng 90:110–118

    Article  Google Scholar 

  180. Schieler O, Beier U (2016) Induction welding of hybrid thermoplastic-thermoset composite parts. King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology 9(1):27–36

    Google Scholar 

  181. Graham D et al (2011) A hybrid joining scheme for high strength multi-material joints. in Proceedings of the 18th International Conference on Composite Materials. 1(1):1–6

  182. Reisgen U, Schiebahn A, Lotte J, Hopmann C, Schneider D, Neuhaus J (2020) Innovative joining technology for the production of hybrid components from FRP and metals. J Mater Process Technol ((282)):116674

  183. Abibe A et al (2011) Development and analysis of a new joining method for polymer-metal hybrid structures. J Thermoplast Compos Mater 24(2):233–249

    Article  CAS  Google Scholar 

  184. Engelmann C et al (2015) Metal meets composite-hybrid joining for automotive applications. Proceedings of LiM2015. Munich 1(1):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. R. Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVI - Polymer Joining and Adhesive Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.R.R., Marques, E.A.S. & da Silva, L.F.M. Polymer joining techniques state of the art review. Weld World 65, 2023–2045 (2021). https://doi.org/10.1007/s40194-021-01143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01143-x

Keywords

Navigation