Skip to main content
Log in

Aluminum welding by combining a diode laser with a pulsed Nd:YAG laser

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Laser welding of aluminum alloys (AA 5754 and AA 6016) by superimposing a pulsed Nd:YAG laser with a continuous wave (cw) diode laser has been investigated in order to improve the weldability and the process efficiency. The low absorption of laser radiation at a wavelength of 1064 nm and the high thermal conductivity make it difficult to laser weld aluminum alloys efficiently. Therefore, a pulsed Nd:YAG laser and a low power diode laser emitting a wavelength of 980 nm were spatially superimposed. This configuration allows to enhance the absorption for the Nd:YAG welding laser due to the preheating of the diode laser. Thus, the process efficiency as well as the weld quality is enhanced. The experiments revealed that a small output power of the diode laser (<150 W) allows increasing the welding speed up to 80 % and the weld depth up to 38 %. Furthermore, the superposition leads to a significant improve of the weld seam quality, in particular to avoid hot cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Davis JR (1993) Aluminium and Aluminum Alloys, Vol. 1, Ohio: ASM international. pp. 1–784

  2. Landesagentur für Elektromobilität und Brennstoffzellentechnologie Baden-Württemberg GmbH (2012) Fraunhofer-Institut für Produktionstechnik und Automatisierung, Institut für Werkzeugmaschinen – Universität Stuttgart, Institut für Fahrzeugkonzepte – Deutsches Zentrum für Luft- und Raumfahrt: Leichtbau in Mobilität und Fertigung: Chancen für Baden-Württemberg

  3. Havemann RH (2001) Proc IEEE 89:5

    Article  Google Scholar 

  4. Johnson BC (1991) Electronic Materials Handbook, Vol. 1, Packaging, ed: M. L. Minges. Materials Park, Ohio: ASM International. pp. 397–503

  5. Mandal NR (2002) Aluminium welding. Woodhead Publishing, India

    Google Scholar 

  6. Mathers G (2002) The welding of aluminium and its alloys. Woodhead Publishing, Hong Kong

    Book  Google Scholar 

  7. Zhang J (2008) Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd:YAG laser welds. Weld J 89:5

    Google Scholar 

  8. Bergmann JP (2013) Effects of diode laser superposition on pulsed laser welding of aluminum. Phys Procedia 41:180–189

    Article  Google Scholar 

  9. Hecht E (2009) Optik. 5., verbesserte Auflage, Oldenbourg Verlag, München

  10. Dorn L (1998) Schweißverhalten von aluminium und seinen legierungen. Mat.-wiss. u. Werkstofftech. Wiley Verlag, Weinheim, p 29

    Google Scholar 

  11. Dausinger F (1995) Strahlwerkzeug Laser Energieeinkopplung und Prozesseffektivität. PhD. Thesis; Stuttgart

  12. Metals Handbook, Vol. 6, Welding, Brazing, and Soldering, 10th ed. 1993. MaterialsPark, Ohio: ASM International

  13. Dudas JH, Collins FR (1966) Preventing weld cracks in high-strength aluminum alloys. Weld J 45(6):241–249

    Google Scholar 

  14. Nakashiba S, Okamoto Y, Sakagawa T, Miura K, Okada A, Uno Y (2011) Welding Characteristics of aluminum alloy by pulsed Nd:Yag Laser with Pre- and Post-Irradiation of superposed continuous diode laser. Proceedings of International Congress on Applications of Lasers and Electro Optics; Orlando, USA; p. 23–27.

  15. Punkari A, Weckman DC, Kerr HW (2003) Effects of magnesium content on dual beam Nd:YAG laser welding of Al-Mg alloys. Sci Technol Weld Join 8:269–281

    Article  Google Scholar 

  16. Drezet JM, Lima MSF, Wagniere JD, Rappaz M, Kurz W, Crack-free aluminium alloy welds using a twin laser process. Safety and Reliability of Welded Components in Energy and Processing Industry

  17. Kou S (2002) Welding Metallurgy, 2nd Edition, Wiley, November

  18. Suttmann O, Moalem A, Kling R, Ostendorf A (2010) Drilling, Cutting, Marking and Microforming. In: Laser Precision Microfabrication. Edited by Sugioka, K.; Meunier, M.; Piqué, A.; Springer, ISBN: 978-3-642-10522-7pp. 311–334

  19. Dilthey U (2005) Schweißtechnische fertigungsverfahren verhalten der werkstoffe beim schweißen. Springer-Verlag, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Pierre Bergmann.

Additional information

Doc. IIW-2530, recommended for publication by Commission IX "Behaviour of Metals Subjected to Welding".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, J.P., Bielenin, M. & Feustel, T. Aluminum welding by combining a diode laser with a pulsed Nd:YAG laser. Weld World 59, 307–315 (2015). https://doi.org/10.1007/s40194-014-0218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0218-8

Keywords

Navigation