Skip to main content

Advertisement

Log in

TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis: Updated

  • Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts (Tatiana Kisseleva, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

TGF-β is a pro-fibrogenic and antiproliferative protein with multiple functions depending on the cellular context. In liver fibrosis, TGF-β was identified as very robust driver of hepatic stellate cell (HSC) activation and extracellular matrix production, and a plethora of approaches targeting the TGF-β signaling pathway were successfully used to tackle fibrogenesis in animal models of chronic liver diseases. The present review builds on knowledge of the last two decades about TGF-β function in myofibroblast generation and fibrogenesis, and presents the milestone discoveries from the recent 3–5 years. These include findings on downstream targets with fibrogenic function, pathways that facilitate TGF-β expression in HSC, and miRNAs regulated by or regulating the TGF-β pathway. Further, recent data on TGF-β signaling, its integration with other pathways, and TGF-β signaling regulators identified in the setting of fibrotic liver disease are provided. Additionally, we will discuss TGF-β and epithelial-to-mesenchymal transition in liver fibrosis, and what we have learned from other fibrotic diseases, besides liver. Finally, challenges and opportunities for TGF-β-directed therapies in HSC activation, liver fibrosis, and disease progression are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471. doi:10.1038/37284

    Article  CAS  PubMed  Google Scholar 

  2. Massagué J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev. doi:10.1101/gad.1350705

    PubMed  Google Scholar 

  3. • Dennler S, Itoh S, Vivien D, et al. (1998) Direct binding of Smad3 and Smad4 to critical TGF-β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100. doi:10.1093/emboj/17.11.3091. This study identified the Smad binding sites (CAGA) in the promoter of the TGF-β target gene PAI-1

  4. Park SH (2005) Fine tuning and cross-talking of TGF-β signal by inhibitory Smads. J Biochem Mol Biol 38:9–16

    Article  PubMed  Google Scholar 

  5. Moustakas A, Heldin C-H (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584. doi:10.1242/jcs.02554

    Article  CAS  PubMed  Google Scholar 

  6. Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19:128–139. doi:10.1038/cr.2008.328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14:181–194. doi:10.1038/nri3623

    Article  CAS  PubMed  Google Scholar 

  8. Lee UE, Friedman SL (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25:195–206. doi:10.1016/j.bpg.2011.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Breitkopf K, Haas S, Wiercinska E et al (2005) Anti-TGF-β strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res 29:121S–131S. doi:10.1097/01.alc.0000189284.98684.22

    Article  CAS  PubMed  Google Scholar 

  10. • Sancho P, Mainez J, Crosas-Molist E, et al. (2012) NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 7:1–14. doi:10.1371/journal.pone.0045285. One of the first papers that demonstrate the role of NOX4 during liver fibrosis and TGF-β mediated apoptosis

  11. Jiang JX, Chen X, Serizawa N et al (2012) Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 53:289–296. doi:10.1016/j.freeradbiomed.2012.05.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. •• Ding N, Yu RT, Subramaniam N, et al. (2013) A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153:601–613. doi:10.1016/j.cell.2013.03.028. This study demonstrates the ability of VDR to inhibit TGFeffects on HSC activation and liver fibrosis by interacting with Smad3

  13. • Liu Y, Liu H, Meyer C, et al. (2013) Transforming growth factor-β-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem 288:30708–19. doi:10.1074/jbc.M113.478685. This work demonstrates Stat3 as important downstream signaling molecule to TGF-β/ALK5 in mediating CTGF expression

  14. • Ding Z, Jin G, Liang H, et al. (2013) Transforming growth factor-β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal 25:1981–92. doi:10.1016/j.cellsig.2013.05.027. This Study provides an evidence for the role of HPCs in liver fibrosis and suggests that the production of CTGF by TGF-β in HPCs is mediated by activated MAPK

  15. •• Tomita K, Teratani T, Suzuki T, et al. (2013) Free cholesterol accumulation in hepatic stellate cells: Mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59:154-69. doi:10.1002/hep.26604. An elegant study demonstrating that free cholesterol in HSCs increases the availability of TLR4 and senstizes HSCs to TGF β action, thereby aggravating liver fibrosis in NASH

  16. •• Tomita K, Teratani T, Suzuki T, et al. (2014) Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J Hepatol 61:98–106. doi:10.1016/j.jhep.2014.03.018 . An interesting study illustrating Acyl-coA regulation as new therapeutic target to treat liver fibrosis

  17. Liu C, Chen X, Yang L et al (2014) Transcriptional repression of the transforming growth factor-β (TGF-β) pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by nuclear factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem 289:7082–7091. doi:10.1074/jbc.M113.543769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jia D, Duan F, Peng P et al (2013) Up-regulation of RACK1 by TGF-β1 promotes hepatic fibrosis in mice. PLoS ONE 8:e60115. doi:10.1371/journal.pone.0060115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Liu M, Peng P, Wang J et al (2015) RACK1-mediated translation control promotes liver fibrogenesis. Biochem Biophys Res Commun 463:255–261. doi:10.1016/j.bbrc.2015.05.040

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Wang J-Y, Yang C-Q, Jiang W (2012) Effect of RhoA on transforming growth factor β1-induced rat hepatic stellate cell migration. Liver Int 32:1093–1102. doi:10.1111/j.1478-3231.2012.02809.x

    Article  PubMed  Google Scholar 

  21. •• Cao S, Yaqoob U, Das A, et al. (2010) Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-β signaling in hepatic stellate cells. J Clin Invest 120:2379–2394. doi:10.1172/JCI41203. This study reports participation of Neuropilin-1, the axonal guidance molecule, in liver cirrhosis via enhancing PDGF/TGF-β signaling in HSCs

  22. Shah R, Reyes-Gordillo K, Arellanes-Robledo J et al (2013) TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6 K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res 37:1838–1848. doi:10.1111/acer.12167

    Article  CAS  PubMed  Google Scholar 

  23. Song Y, Zhan L, Yu M et al (2014) TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells. PLoS One 9:e101179. doi:10.1371/journal.pone.0101179

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fang L, Huang C, Meng X et al (2014) TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway. Toxicol Appl Pharmacol 280:335–344. doi:10.1016/j.taap.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  25. •• Mair M, Zollner G, Schneller D, et al. (2010) Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis. Gastroenterology 138:2499–2508. doi:10.1053/j.gastro.2010.02.049. An important work showing that inactivation of Stat3 in hepatocytes and cholangiocytes of Mdr2ko mice aggravated bile acid-induced liver injury and fibrosis

  26. Ogata H, Chinen T, Yoshida T et al (2006) Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-β1 production. Oncogene 25:2520–2530. doi:10.1038/sj.onc.1209281

    Article  CAS  PubMed  Google Scholar 

  27. Xu M-Y, Hu J-J, Shen J et al (2014) Stat3 signaling activation crosslinking of TGF-β1 in hepatic stellate cell exacerbates liver injury and fibrosis. Biochim Biophys Acta 1842:1–9. doi:10.1016/j.bbadis.2014.07.025

    Article  Google Scholar 

  28. • Narmada BC, Chia SM, Tucker-Kellogg L, Yu H (2013) HGF regulates the activation of TGF-β1 in rat hepatocytes and hepatic stellate cells. J Cell Physiol 228:393–401. doi:10.1002/jcp.24143. This study examines crosstalk between HGF and TGF-β suggesting that HGF decreases TGF-β levels through induction of plasmin

  29. • Woodhoo A, Iruarrizaga-Lejarreta M, Beraza N, et al. (2012) Human antigen R contributes to hepatic stellate cell activation and liver fibrosis. Hepatology 56:1870–1882. doi:10.1002/hep.25828 This study documents that RBP human antigen R (HuR) is fibrogenic by sensitizing activated HSC to PDGF and TGF-β

  30. Yang JW, Hien TT, Lim SC et al (2014) Pin1 induction in the fibrotic liver and its roles in TGF-β1 expression and Smad2/3 phosphorylation. J Hepatol 60:1235–1241. doi:10.1016/j.jhep.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  31. Bowen T, Jenkins RH, Fraser DJ (2013) MicroRNAs, transforming growth factor β-1, and tissue fibrosis. J Pathol 229:274–285. doi:10.1002/path.4119

    Article  CAS  PubMed  Google Scholar 

  32. Li ZJ, Ou-Yang PH, Han XP (2014) Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal 26:141–148. doi:10.1016/j.cellsig.2013.09.018

    Article  PubMed  Google Scholar 

  33. Hu J, Chen C, Liu Q et al (2015) The role of the miR-31/FIH1 pathway in TGF-β-induced liver fibrosis. Clin Sci 129:305–317. doi:10.1042/CS20140012

    Article  CAS  PubMed  Google Scholar 

  34. • Mungunsukh O, Day RM (2013) Transforming growth factor-β1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism. Mol Biol Cell 24:2088–97. doi:10.1091/mbc.E13-01-0017. Another interesting study that shows the crosstalk between TGF-β and HGF and the capability of TGF-β to inhibit HGF by microRNA-199

  35. Zheng J, Lin Z, Dong P et al (2013) Activation of hepatic stellate cells is suppressed by microRNA-150. Int J Mol Med 32:17–24. doi:10.3892/ijmm.2013.1356

    CAS  PubMed  Google Scholar 

  36. • Roderburg C, Luedde M, Vargas Cardenas D, et al. (2013) MiR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J Hepatol 58:736–742. doi: 10.1016/j.jhep.2012.11.022. The study shows the antifibrotic role of MiR-133a in liver and illustrates its potential as target for diagnostics and therapy

  37. Xiao X, Huang C, Zhao C et al (2015) Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition. Arch Biochem Biophys 566:49–57. doi:10.1016/j.abb.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  38. Zhu D, He X, Duan Y et al (2014) Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum. Parasit Vectors 7:148. doi:10.1186/1756-3305-7-148

    Article  PubMed Central  PubMed  Google Scholar 

  39. • He Y, Huang C, Sun X, et al. (2012) MicroRNA-146a modulates TGF-β1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal 24:1923–1930. doi:10.1016/j.cellsig.2012.06.003. The study shows the ability of MiR-146a to inhibit TGF-β activity through decreasing Smad4

  40. Tu X, Zheng X, Li H et al (2015) MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor-β signaling in hepatic stellate cells. Toxicol Sci 146:157–169. doi:10.1093/toxsci/kfv081

    Article  CAS  PubMed  Google Scholar 

  41. Ellenrieder V, Buck A, Harth ANA et al (2004) KLF11 mediates a critical mechanism in TGF beta signaling that is inactivated by ERK-MAPK in pancreatic cancer cells. Gastroenterology 5085:607–620. doi:10.1053/S0016-5085(04)00864-9

    Article  Google Scholar 

  42. • Yu F, Guo Y, Chen B, et al. (2015) MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Investig 95:781–789. doi:10.1038/labinvest.2015.58. The authors show that MiR-175-5p is targeting Smad7 during HSC activation, therewith enhancing TGF-β action and fibrogenesis

  43. Sun X, He Y, Ma T-T et al (2014) Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation. Mol Cell Biochem 388:11–23. doi:10.1007/s11010-013-1895-0

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Zha Y, Hu W et al (2013) The autoregulatory feedback loop of MicroRNA-21/programmed cell death protein 4/Activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem 288:37082–37093. doi:10.1074/jbc.M113.517953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zhang Z, Gao Z, Hu W et al (2013) 3,3′-Diindolylmethane ameliorates experimental hepatic fibrosis via inhibiting miR-21 expression. Br J Pharmacol 170:649–660. doi:10.1111/bph.12323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584. doi:10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  47. • Zhang L, Liu C, Meng X, et al. (2014) Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol Cell Biochem 400:17–28. doi:10.1007/s11010-014-2258-1. This study provides evidence for opposite roles of Smad2 and Smad3 in liver fibrosis

  48. Yoshida K, Matsuzaki K (2012) Differential regulation of TGF-β/Smad signaling in hepatic stellate cells between acute and chronic liver injuries. Front Physiol 3:1–7. doi:10.3389/fphys.2012.00053

    Article  Google Scholar 

  49. Matsuzaki K (2012) Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res 347:225–243. doi:10.1007/s00441-011-1178-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. • Yamaguchi T, Matsuzaki K, Inokuchi R, et al. (2013) Phosphorylated Smad2 and Smad3 signaling: Shifting between tumor suppression and fibro-carcinogenesis in chronic hepatitis C. Hepatol Res 43:1327–1342. doi:10.1111/hepr.12082. An interesting study that describes variant biological effects of differently phosphorylated forms of Smad2 and Smad3 at linker and/or C-terminal regions

  51. Feng T, Dzieran J, Gu X et al (2015) Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clin Sci 128:761–774. doi:10.1042/CS20140606

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Zhao J, Chu ESH et al (2013) Inhibitory role of Smad7 in hepatocarcinogenesis in mice and in vitro. J Pathol 230:441–452. doi:10.1002/path.4206

    Article  CAS  PubMed  Google Scholar 

  53. Xia H, Ooi LLPJ, Hui KM (2013) MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 58:629–641. doi:10.1002/hep.26369

    Article  CAS  PubMed  Google Scholar 

  54. Muñoz-Félix JM, González-Núñez M, López-Novoa JM (2013) ALK1-Smad1/5 signaling pathway in fibrosis development: friend or foe? Cytokine Growth Factor Rev 24:523–537. doi:10.1016/j.cytogfr.2013.08.002

    Article  PubMed  Google Scholar 

  55. • Wiercinska E, Wickert L, Denecke B, et al. (2006) Id1 is a critical mediator in TGF-β-induced transdifferentiation of rat hepatic stellate cells. Hepatology 43:1032–1041. doi:10.1002/hep.21135. The study was the first to identify ALK1/Smad1 as downstream mediators of TGFsignaling in HSCs and a critical role in fibrogenesis for its target gene Id1

  56. Muñoz-Félix JM, Perretta-Tejedor N, Eleno N et al (2014) ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts. Biochim Biophys Acta 1843:1111–1122. doi:10.1016/j.bbamcr.2014.02.017

    Article  PubMed  Google Scholar 

  57. An P, Tian Y, Chen M, Luo H (2012) Ca(2 +)/calmodulin- dependent protein kinase II mediates transforming growth factor-β-induced hepatic stellate cells proliferation but not in collagen α1(I) production. Hepatol Res 42:806–818. doi:10.1111/j.1872-034X.2012.00983.x

    Article  CAS  PubMed  Google Scholar 

  58. De Minicis S, Rychlicki C, Agostinelli L et al (2013) Semaphorin 7A contributes to TGF-β-mediated liver fibrogenesis. Am J Pathol 183:820–830. doi:10.1016/j.ajpath.2013.05.030

    Article  PubMed  Google Scholar 

  59. • Tu K, Li J, Verma VK, et al. (2014) VASP promotes TGF-β activation of hepatic stellate cells by regulating Rab11 dependent plasma membrane targeting of TGF-β receptors. Hepatology 1–54. doi:10.1002/hep.27251. The study shows that VASP binds to TβRII in HSCs, thus increasing sensitivity to TGF-β

  60. Liu C, Li J, Xiang X et al (2014) PDGF receptor-α promotes TGF-β signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-β receptors. AJP Gastrointest Liver Physiol 307:G749–G759. doi:10.1152/ajpgi.00138.2014

    Article  CAS  Google Scholar 

  61. Nyati S, Schinske-sebolt K, Pitchiaya S et al (2015) The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-b signaling. Sci Signal 8:1–12. doi:10.1126/scisignal.2005379

    Article  Google Scholar 

  62. Shukla A, Edwards R, Yang Y et al (2014) CLIC4 regulates TGF-β-dependent myofibroblast differentiation to produce a cancer stroma. Oncogene 33:842–850. doi:10.1038/onc.2013.18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. • Shukla A, Malik M, Cataisson C, et al. (2009) TGF-β signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat Cell Biol 11:777–784. doi: 10.1038/ncb1885. The study reports that CLIC4 stabilizes pSmad2/3 in the nucleus thereby enhancing TGF-β signaling

  64. Miyazono K (2000) TGF-β signaling by Smad proteins. Cytokine Growth Factor Rev 11:15–22. doi:10.1016/S1359-6101(99)00025-8

    Article  CAS  PubMed  Google Scholar 

  65. Bian E-B, Huang C, Wang H et al (2014) Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 224:175–185. doi:10.1016/j.toxlet.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  66. •• Seki E, De Minicis S, Osterreicher CH, et al. (2007) TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13:1324–1332. doi:10.1038/nm1663. This elegant study identifies HSC as primary target cell type of LPS in liver fibrosis, signaling via TLR4 and downregulating TGF-β decoy receptor BAMBI to enhance TGF-β activity and HSC activation

  67. Friedman SL (2007) A deer in the headlights: BAMBI meets liver fibrosis. Nat Med 13:1281–1282. doi:10.1038/nm1107-1281

    Article  CAS  PubMed  Google Scholar 

  68. Maxwell MA, Cleasby ME, Harding A et al (2005) Nur77 regulates lipolysis in skeletal muscle cells: evidence for cross-talk between the β-adrenergic and an orphan nuclear hormone receptor pathway. J Biol Chem 280:12573–12584. doi:10.1074/jbc.M409580200

    Article  CAS  PubMed  Google Scholar 

  69. Pei L, Waki H, Vaitheesvaran B et al (2006) NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 12:1048–1055. doi:10.1038/nm1471

    Article  CAS  PubMed  Google Scholar 

  70. Hanna RN, Carlin LM, Hubbeling HG et al (2011) The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 12:778–785. doi:10.1038/ni.2063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. • Zhou F, Drabsch Y, Dekker TJ a, et al. (2014) Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nat Commun 5:3388. doi:10.1038/ncomms4388. The study describes NR4A1 as a strong activator of TGF-β signaling in breast cancer through its ability to induce Smad7 degradation

  72. •• Palumbo-Zerr K, Zerr P, Distler A, et al. (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat Med 21:150–158. doi:10.1038/nm.3777. In contrary to Zhou et al (2014), this study introduces NR4A1 as a TGF-β inhibitor describing a disturbed feedback loop between TGF-β and NR4A1 in different fibrotic diseases and illustrates usage of a NR4A1 agonist as treatment approach to rebalance this disturbed loop

  73. • Lim JY, Oh M a., Kim WH, et al. (2012) AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J Cell Physiol 227:1081–1089. doi:10.1002/jcp.22824. The study provides evidence for an interaction between AMPK and TGF-β in HSCs. AMPK inhibits TGF-β signaling through targeting p300

  74. Sun H, Ghaffari S, Taneja R (2007) bHLH-orange transcription factors in development and cancer. Transl Oncogenomics 2:107–120

    PubMed Central  PubMed  Google Scholar 

  75. Acharjee S, Chung T-K, Gopinadhan S et al (2014) Sharp-1 regulates TGF-β signaling and skeletal muscle regeneration. J Cell Sci 127:599–608. doi:10.1242/jcs.136648

    Article  CAS  PubMed  Google Scholar 

  76. Hong IH, Park SJ, Goo MJ et al (2013) JNK1 and JNK2 regulate alpha-SMA in hepatic stellate cells during CCl4-induced fibrosis in the rat liver. Pathol Int 63:483–491. doi:10.1111/pin.12094

    Article  CAS  PubMed  Google Scholar 

  77. • Jiang Y, Wu C, Boye A, et al. (2015) MAPK inhibitors modulate Smad2/3/4 complex cyto-nuclear translocation in myofibroblasts via Imp7/8 mediation. Mol Cell Biochem. doi:10.1007/s11010-015-2443-x. The study shows crosstalk between MAPK and TGF-β signaling. Specific MAPK inhibitors blocked nuclear translocation of Smad2/3/4 complexes through inhibition of Imp7/8

  78. Sullivan B, Kassel K, Manley S et al (2011) Regulation of transforming growth factor-1-dependent integrin 6 expression by p38 mitogen-activated protein kinase in bile duct epithelial cells. J Pharmacol Exp Ther 337:471–478. doi:10.1124/jpet.110.177337.Sullivan

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Huang G, Besner GE, Brigstock DR (2012) Heparin-binding epidermal growth factor-like growth factor suppresses experimental liver fibrosis in mice. Lab Investig 92:703–712. doi:10.1038/labinvest.2012.3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Takemura T, Yoshida Y, Kiso S et al (2013) Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice. Biochem Biophys Res Commun 437:185–191. doi:10.1016/j.bbrc.2013.05.097

    Article  CAS  PubMed  Google Scholar 

  81. • Fabre T, Kared H, Friedman SL, Shoukry NH (2014) IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-β receptor on hepatic stellate cells in a JNK-dependent manner. J Immunol 193:3925–3933. doi:10.4049/jimmunol.1400861. The study identifies cooperative signaling between IL17A and TβRII in HSCs, thereby enhancing TGF-β signaling at suboptimal TGF-β doses

  82. • Liu Y, Meyer C, Müller A, et al. (2011) IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-β-independent Smad signaling. J Immunol 187:2814–2823. doi:10.4049/jimmunol.1003260. The studies describes how IL-13 and TGF-β signaling pathways communicate to integrate induction of CTGF expression in HSCs

  83. • Weng HL, Liu Y, Chen JL, et al. (2009) The etiology of liver damage imparts cytokines transforming growth factor-β 1 or interleukin-13 as driving forces in fibrogenesis. Hepatology 50:230–243. doi:10.1002/hep.22934. Here, the authors show in human patients with CLD that depending on the etiology, either TGF-β or IL-13 can be the driver of liver fibrosis

  84. • Carmona-Cuenca I, Roncero C, Sancho P, et al. (2008) Upregulation of the NADPH oxidase NOX4 by TGF-β in hepatocytes is required for its pro-apoptotic activity. J Hepatol 49:965–976. doi:10.1016/j.jhep.2008.07.021. The study shows requirement of upregulated NOX4 in TGF-β-induced hepatocyte apoptosis

  85. Murillo MM, del Castillo G, Sánchez A et al (2005) Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes. Oncogene 24:4580–4587. doi:10.1038/sj.onc.1208664

    Article  CAS  PubMed  Google Scholar 

  86. • Meyer C, Godoy P, Bachmann A, et al. (2011) Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes. J Hepatol 55:369–378. doi:10.1016/j.jhep.2010.11.027. This work highlights the importance of endocytosis in regulating TGF-β signaling in hepatocytes

  87. • Meyer C, Liu Y, Kaul a, et al. (2013) Caveolin-1 abrogates TGF-β mediated hepatocyte apoptosis. Cell Death Dis 4:e466. doi:10.1038/cddis.2012.204. This work shows Caveolin-1 as important hepatocyte fate determinant for TGF-β effects. Knockdown of Caveolin-1 sensitized hepatocytes for TGF-β mediated apoptosis through downregulating AKT phosphorylation

  88. • Moreno-Càceres J, Caja L, Mainez J, et al. (2014) Caveolin-1 is required for TGF-β-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death Dis 5:e1326. doi:10.1038/cddis.2014.294. This study shows a link between TGF-β and the EGF receptor via Caveolin

  89. •• Godoy P, Hengstler JG, Ilkavets I, et al. (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor-β-induced apoptosis. Hepatology 49:2031–2043. doi:10.1002/hep.22880. This study demonstrates that cultured hepatocytes undergo cellular stress with activation of survival pathways, which protect against TGF-β dependent apoptosis

  90. •• Dooley S, Hamzavi J, Ciuclan L, et al. (2008) Hepatocyte-specific Smad7 expression attenuates TGF-β-mediated fibrogenesis and protects against liver damage. Gastroenterology 135:642–659. doi:10.1053/j.gastro.2008.04.038. This investigation shows that overexpression of TGF-β antagonist Smad7 in hepatocytes interferes with liver fibrogenesis in CCl4 treated mice

  91. •• Yang L, Roh YS, Song J, et al. (2014) Transforming growth factor β signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology 59:483–495. doi:10.1002/hep.26698. This paper convincingly shows participation of hepatocyte TGF-β signaling in the generation of a NASH phenotype in mice fed a high fat diet

  92. •• Yang L, Inokuchi S, Roh YS, et al. (2013) Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 144:1042–1054.e4. doi:10.1053/j.gastro.2013.01.056. This paper shows that TAK1 is a critical TGF-β signaling regulator in hepatocytes that reduces pro-apoptotic activity by activating cell survival pathways. Its abrogation leads to massive TGF-β mediated hepatocyte death, proliferative activity and inflammation mediated HCC development

  93. Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147(765–783):e4. doi:10.1053/j.gastro.2014.07.018

    PubMed  Google Scholar 

  94. • Jiang JX, Venugopal S, Serizawa N, et al. (2010) Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 139:1375–1384.e4. doi:10.1053/j.gastro.2010.05.074. The study utilized a unique in vivo phagocytosis sytem by injecting wt mice or NOX2 / mice with lentiviral-GFP under the control of a hepatocyte-specific promoter. With that approach, the authors show that apoptosis and phagocytosis of hepatocytes directly induce HSC activation and initiation of fibrosis, and that NOX2, the phagocytic NADPH oxidase, plays a key role in this process

  95. • Huebener P, Pradere J, Hernandez C, et al. (2015) The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. 125:539–550. doi:10.1172/JCI76887.DAMP. The study shows that hepatocytes under stress send out signals termed Damage-associated molecular patterns to initiate cellular reactions in injured liver tissue; in this case HMGB1, which amplifies neutrophil-mediated injury via its receptor RAGE

  96. • Jung Y, Witek RP, Syn W-K, et al. (2010) Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59:655–665. doi:10.1136/gut.2009.204354. The study similarly shows that dying hepatocytes overexpress Hh ligands, which provide a survival signal for progenitor cells and myofibroblasts thus triggering wound healing/fibrogenesis

  97. Sakata K, Eda S, Lee ES et al (2014) Neovessel formation promotes liver fibrosis via providing latent transforming growth factor-β. Biochem Biophys Res Commun 443:950–956. doi:10.1016/j.bbrc.2013.12.074

    Article  CAS  PubMed  Google Scholar 

  98. Xie G, Diehl AM (2013) Evidence for and against epithelial-to-mesenchymal transition in the liver. Am J Physiol Gastrointest Liver Physiol 305:G881–G890. doi:10.1152/ajpgi.00289.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Lee SJ, Kim KH, Park KK (2014) Mechanisms of fibrogenesis in liver cirrhosis: the molecular aspects of epithelial-mesenchymal transition. World J Hepatol 6:207–216. doi:10.4254/wjh.v6.i4.207

    Article  PubMed Central  PubMed  Google Scholar 

  100. Zeisberg M, Yang C, Martino M et al (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282:23337–23347. doi:10.1074/jbc.M700194200

    Article  CAS  PubMed  Google Scholar 

  101. •• Österreicher CH, Penz-österreicher M, Grivennikov SI, Guma M (2010) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. doi:10.1073/pnas.1017547108. The study identifies FSP1, previously described as a marker to identify hepatocytes undergoing EMT during fibrogenesis, as a specific marker for a subpoulation of macrophages

  102. •• Taura K, Miura K, Iwaisako K, et al. (2010) Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51:1027–1036. doi:10.1002/hep.23368. An interesting study using lineage tracing to confirm that there is no change of the morphology and no expression of EMT markers in hepatocytes of CCl4-treated mice challenging the concept that hepatocytes can undergo EMT

  103. Bi WR, Xu GT, Lv LX, Yang CQ (2014) The ratio of transforming growth factor-β1/bone morphogenetic protein-7 in the progression of the epithelial-mesenchymal transition contributes to rat liver fibrosis. Genet Mol Res 13:1005–1014. doi:10.4238/2014.February.20.2

    Article  CAS  PubMed  Google Scholar 

  104. Bi WR, Jin CX, Xu GT, Yang CQ (2012) Bone morphogenetic protein-7 regulates Snail signaling in carbon tetrachloride-induced fibrosis in the rat liver. Exp Ther Med 4:1022–1026. doi:10.3892/etm.2012.720

    PubMed Central  CAS  PubMed  Google Scholar 

  105. • Wang S-L, Yang C, Qi X-L, et al. (2013) Inhibitory effect of bone morphogenetic protein-7 on hepatic fibrosis in rats. Int J Clin Exp Pathol 6:897–903. The study shows the ability of BMP-7 to attenuate liver fibrosis via inhibition of TGF-β1 signaling

  106. Wang L, Dong J, Xiong L et al (2014) BMP-7 attenuates liver fibrosis via regulation of epidermal growth factor receptor. Int J Clin Exp Pathol 7:3537–3547

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Chen J, Xia Y, Lin X et al (2014) Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Lab Investig 94:545–556. doi:10.1038/labinvest.2014.43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Singh V, Barbosa FL, Torricelli A a M, et al. (2014) Transforming growth factor-β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts invitro. Exp Eye Res 120:152–160. doi: 10.1016/j.exer.2014.01.003

  109. • Kim S, Lim JH, Woo CH (2013) ERK5 inhibition ameliorates pulmonary fibrosis via regulating Smad3 acetylation. Am J Pathol 183:1758–1768. doi:10.1016/j.ajpath.2013.08.014. Interestingly, this study shows that ERK5 inhibition can antagonize TGF-β-mediated fibrogenic signaling through Smad3 acetylation instead through Smad3 phosphorylation

  110. Liu N, He S, Ma L et al (2013) Blocking the Class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-β and EGFR signaling. PLoS One 8:1–12. doi:10.1371/journal.pone.0054001

    Google Scholar 

  111. Chen K-H, Hsu H-H, Lee C-C et al (2014) The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts. PLoS One 9:e106554. doi:10.1371/journal.pone.0106554

    Article  PubMed Central  PubMed  Google Scholar 

  112. • Duan W-J, Yu X, Huang X-R, et al. (2014) Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. Am J Pathol 184:2275–2284. doi:10.1016/j.ajpath.2014.04.014 A good study that expand our information about the specific roles that Smad2 and Smad3 play in organ fibrosis and confirm the results of Zhang et al (2014) in the liver

  113. Stifano G, Affandi AJ, Mathes AL et al (2014) Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor-β signature gene expression, and fibrosis. Arthritis Res Ther 16:R136. doi:10.1186/ar4598

    Article  PubMed Central  PubMed  Google Scholar 

  114. Sassoli C, Chellini F, Pini A et al (2013) Relaxin prevents cardiac fibroblast-myofibroblast transition via Notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8:1–12. doi:10.1371/journal.pone.0063896

    Article  Google Scholar 

  115. Chen Y, Zheng S, Qi D et al (2012) Inhibition of notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One 7:1–11. doi:10.1371/journal.pone.0046512

    CAS  Google Scholar 

  116. Calone I, Souchelnytskyi S (2012) Inhibition of TGF-β signaling and its implications in anticancer treatments. Exp Oncol 34:9–16

    CAS  PubMed  Google Scholar 

  117. Karkampouna S, Goumans M-J, ten Dijke P et al (2015) Inhibition of TGF-β type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice. Arch Toxicol. doi:10.1007/s00204-014-1436-y

    PubMed  Google Scholar 

  118. Dooley S, Ten Dijke P (2012) TGF-β in progression of liver disease. Cell Tissue Res 347:245–256. doi:10.1007/s00441-011-1246-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. •• Henderson NC, Arnold TD, Katamura Y, et al. (2013) Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19:1617–24. doi:10.1038/nm.3282. An elegant study that used Cre/Loxp technique to specifically target αv integrin in different organs. The results show that αv integrin depletion is effective in protecting the mice against CCl4-induced liver fibrosis and attentuated also renal and pulmonary fibrosis, highlighting αv integrin as general therapeutic target in variant fibrotic diseases

  120. Jiang Y, Wang C, Li Y-Y et al (2014) Mistletoe alkaloid fractions alleviates carbon tetrachloride-induced liver fibrosis through inhibition of hepatic stellate cell activation via TGF-β/Smad interference. J Ethnopharmacol 158:230–238. doi:10.1016/j.jep.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  121. Huang W, Li L, Tian X et al (2014) Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/smad pathway. Mol Med Rep. doi:10.3892/mmr.2014.3026

    Google Scholar 

  122. Tang LX, He RH, Yang G et al (2012) Asiatic acid inhibits liver fibrosis by blocking TGF-β/smad signaling in vivo and in vitro. PLoS One. doi:10.1371/journal.pone.0031350

    Google Scholar 

  123. Clichici S, Olteanu D, Nagy A-L et al (2015) Silymarin inhibits the progression of fibrosis in the early stages of liver injury in CCl4-treated rats. J Med Food 18:290–298. doi:10.1089/jmf.2013.0179

    Article  CAS  PubMed  Google Scholar 

  124. • Chiu YS, Wei CC, Lin YJ, et al. (2014) Il-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology 1003–1014. doi:10.1002/hep.27189. The study shows the detrimental effects of IL-20 during liver fibrosis in human and animals illustrating that blocking antibodies for IL-20 and IL-20R1 are potential therapeutic agents

  125. Fan X, Zhang Q, Li S et al (2013) Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1. PLoS One 8:1–13. doi:10.1371/journal.pone.0082190

    Google Scholar 

  126. Van Beuge MM, Prakash J, Lacombe M et al (2013) Enhanced effectivity of an ALK5-inhibitor after cell-specific delivery to hepatic stellate cells in mice with liver injury. PLoS One 8:1–9. doi:10.1371/journal.pone.0056442

    Google Scholar 

  127. Aoyama T, Paik Y-H, Watanabe S et al (2012) Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56:2316–2327. doi:10.1002/hep.25938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Pardali E, Dijke P (2009) Transforming growth factor-β signaling and tumor angiogenesis. Mol Cell 14:4848–4861

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the BMBF [Virtual Liver network (www.virtual-liver.de), VLN; SD], the EU [IT-Liver consortium (www.it-liver.eu), Marie Curie Training Network; SD, IF, JS], and the DAAD [German Egyptian Research Long-term Scholarship; BD]. Further, we thank Dr. Roman Liebe for final proof of English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Dooley.

Additional information

This article is part of the Topical Collection on Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewidar, B., Soukupova, J., Fabregat, I. et al. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis: Updated. Curr Pathobiol Rep 3, 291–305 (2015). https://doi.org/10.1007/s40139-015-0089-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0089-8

Keywords

Navigation