Skip to main content
Log in

Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatic stellate cell (HSC) activation is a pivotal event in the initiation and progression of hepatic fibrosis since it mediates transforming growth factor beta 1 (TGF-β1)-driven extracellular matrix (ECM) deposition. MicroRNAs (miRNAs), small non-coding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key factors to regulate cell proliferation, differentiation, and apoptosis. Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in hepatic fibrosis is still poorly understood. The aim of this study is to investigate whether miR-200a could attenuate hepatic fibrosis partly through Wnt/β-catenin and TGF-β-dependant mechanisms. Our study found that the expression of endogenous miR-200a was decreased in vitro in TGF-β1-induced HSC activation as well as in vivo in CCl4-induced rat liver fibrosis. Overexpression of miR-200a significantly inhibited α-SMA activity and further affected the proliferation of TGF-β1-dependent activation of HSC. In addition, we identified β-catenin and TGF-β2 as two functional downstream targets for miR-200a. Interestingly, miR-200a specifically suppressed β-catenin in the protein level, whereas miR-200a-mediated suppression of TGF-β2 was shown on both mRNA and protein levels. Our results revealed the critical regulatory role of miR-200a in HSC activation and implied miR-200a as a potential candidate for therapy by deregulation of Wnt/β-catenin and TGFβ signaling pathways, at least in part, via decreasing the expression of β-catenin and TGF-β2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HSC:

Hepatic stellate cell

ECM:

Extracellular matrix

α-SMA:

α-Smooth muscle actin

TGF-β:

Transforming growth factor-β

β-catenin:

Cadherin-associated protein beta

3′-UTR:

3′-Untranslated region

PBS:

Phosphate-buffered saline

SDS:

Sodium dodecyl sulfate

Wt:

Wild type

ZEB:

Zinc-finger E-box-binding homeobox

One-step qRT-PCR:

One-step quantitative real-time PCR

References

  1. Friedman SL, Maher JJ, Bissell DM (2000) Mechanisms and therapy of hepatic fibrosis: report of the AASLD Single Topic Basic Research Conference. Hepatology 32(6):1403–1408. doi:10.1053/jhep.2000.20243

    Article  CAS  PubMed  Google Scholar 

  2. Wells RG (2005) The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 39(4 Suppl 2):S158–S161

    Article  CAS  PubMed  Google Scholar 

  3. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172. doi:10.1152/physrev.00013.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH, Russo MW, Bonkovsky HL, Schrum LW (2012) Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 56(1):300–310. doi:10.1002/hep.25613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gressner AM (1996) Mediators of hepatic fibrogenesis. Hepatogastroenterology 43(7):92–103

    CAS  PubMed  Google Scholar 

  6. Gressner AM, Weiskirchen R (2006) Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 10(1):76–99

    Article  CAS  PubMed  Google Scholar 

  7. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146

    Article  CAS  PubMed  Google Scholar 

  8. Carrington LM, Albon J, Anderson I, Kamma C, Boulton M (2006) Differential regulation of key stages in early corneal wound healing by TGF-beta isoforms and their inhibitors. Invest Ophthalmol Vis Sci 47(5):1886–1894. doi:10.1167/iovs.05-0635

    Article  PubMed  Google Scholar 

  9. Guo Y, Xiao L, Sun L, Liu F (2012) Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res 61(4):337–346

    CAS  PubMed  Google Scholar 

  10. Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, Tsukamoto H (2008) Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 294(1):G39–G49. doi:10.1152/ajpgi.00263.2007

    Article  CAS  PubMed  Google Scholar 

  11. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. doi:10.1038/nrg2936

    Article  CAS  PubMed  Google Scholar 

  12. Guo CJ, Pan Q, Jiang B, Chen GY, Li DG (2009) Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells. Apoptosis 14(11):1331–1340. doi:10.1007/s10495-009-0401-3

    Article  CAS  PubMed  Google Scholar 

  13. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S (2009) Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 583(4):759–766. doi:10.1016/j.febslet.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  14. Sekiya Y, Ogawa T, Iizuka M, Yoshizato K, Ikeda K, Kawada N (2011) Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-beta-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol 226(10):2535–2542. doi:10.1002/jcp.22598

    Article  CAS  PubMed  Google Scholar 

  15. Chen C, Wu CQ, Zhang ZQ, Yao DK, Zhu L (2011) Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res 317(12):1714–1725. doi:10.1016/j.yexcr.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J (2012) miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 421(1):4–8. doi:10.1016/j.bbrc.2012.03.025

    Article  CAS  PubMed  Google Scholar 

  17. Venugopal SK, Jiang J, Kim TH, Li Y, Wang SS, Torok NJ, Wu J, Zern MA (2010) Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol 298(1):G101–G106. doi:10.1152/ajpgi.00220.2009

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Huang C, Sun X, Long XR, Lv XW, Li J (2012) MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal 24(10):1923–1930. doi:10.1016/j.cellsig.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  19. Kwiecinski M, Elfimova N, Noetel A, Tox U, Steffen HM, Hacker U, Nischt R, Dienes HP, Odenthal M (2012) Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab Invest 92(7):978–987. doi:10.1038/labinvest.2012.70

    Article  CAS  PubMed  Google Scholar 

  20. Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180(2):484–493. doi:10.1016/j.ajpath.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P (2011) miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60(1):280–287. doi:10.2337/db10-0892

    Article  CAS  PubMed  Google Scholar 

  22. Lafyatis R (2006) Targeting fibrosis in systemic sclerosis. Endocr Metab Immune Disord Drug Targets 6(4):395–400

    Article  CAS  PubMed  Google Scholar 

  23. Schuppan D, Ruehl M, Somasundaram R, Hahn EG (2001) Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21(3):351–372. doi:10.1055/s-2001-17556

    Article  CAS  PubMed  Google Scholar 

  24. Shimada H, Staten NR, Rajagopalan LE (2011) TGF-beta1 mediated activation of Rho kinase induces TGF-beta2 and endothelin-1 expression in human hepatic stellate cells. J Hepatol 54(3):521–528. doi:10.1016/j.jhep.2010.07.026

    Article  CAS  PubMed  Google Scholar 

  25. Chau BN, Brenner DA (2011) What goes up must come down: the emerging role of microRNA in fibrosis. Hepatology 53(1):4–6. doi:10.1002/hep.24071

    Article  CAS  PubMed  Google Scholar 

  26. Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119(6):1420–1428. doi:10.1172/JCI39104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  28. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, Lindeman GJ, Shannon MF, Drew PA, Khew-Goodall Y, Goodall GJ (2011) An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22(10):1686–1698. doi:10.1091/mbc.E11-02-0103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J (2012) The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 302(3):F369–F379. doi:10.1152/ajprenal.00268.2011

    Article  CAS  PubMed  Google Scholar 

  30. Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 6(1):e16081. doi:10.1371/journal.pone.0016081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Batra V, Musani AI, Hastie AT, Khurana S, Carpenter KA, Zangrilli JG, Peters SP (2004) Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy 34(3):437–444

    Article  CAS  PubMed  Google Scholar 

  32. Serpero L, Petecchia L, Sabatini F, Giuliani M, Silvestri M, Di Blasi P, Rossi GA (2006) The effect of transforming growth factor (TGF)-beta1 and (TGF)-beta2 on nasal polyp fibroblast activities involved upper airway remodeling: modulation by fluticasone propionate. Immunol Lett 105(1):61–67. doi:10.1016/j.imlet.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  33. Lee SY, Chuang JH, Huang CC, Chou MH, Wu CL, Chen CM, Hsieh CS, Chen CL (2004) Identification of transforming growth factors actively transcribed during the progress of liver fibrosis in biliary atresia. J Pediatr Surg 39(5):702–708

    Article  PubMed  Google Scholar 

  34. Jiang F, Parsons CJ, Stefanovic B (2006) Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol 45(3):401–409. doi:10.1016/j.jhep.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  35. Nejak-Bowen K, Monga SP (2008) Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis 4(2):92–99

    Article  PubMed Central  PubMed  Google Scholar 

  36. Medici D, Hay ED, Olsen BR (2008) Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 19(11):4875–4887. doi:10.1091/mbc.E08-05-0506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wang Y, Sun Z, Qiu X, Li Y, Qin J, Han X (2009) Roles of Wnt/beta-catenin signaling in epithelial differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 390(4):1309–1314. doi:10.1016/j.bbrc.2009.10.143

    Article  CAS  PubMed  Google Scholar 

  38. Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol 29(21):5923–5940. doi:10.1128/MCB.00332-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20(2):119–125. doi:10.1016/j.ceb.2008.01.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287(5458):1606–1609

    Article  CAS  PubMed  Google Scholar 

  41. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17(1):45–51. doi:10.1016/j.gde.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  42. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. doi:10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China (Nos: 81072686, 81273526, and 81202978) and the Natural Science Foundation of Anhui Province (KJ2010A178).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., He, Y., Ma, TT. et al. Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation. Mol Cell Biochem 388, 11–23 (2014). https://doi.org/10.1007/s11010-013-1895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1895-0

Keywords

Navigation