Skip to main content

Advertisement

Log in

In Vivo Confocal Microscopy Evaluation in Dry Eye and Related Diseases

  • Cornea (T Yamaguchi, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We reviewed recent findings on in vivo confocal microscopy (IVCM) of the ocular surface in dry eye and related diseases.

Recent Findings

In dry eye disease, IVCM allows for corneal structure evaluation at the cellular level and is frequently used in diagnosis, disease course follow-up, and management. IVCM also enables a detailed examination of variations, such as abnormal hyperreflexia keratocytes and inflammatory cells, altered corneal superficial cell density, and basal cell density. In addition, several cellular alterations in ocular surface diseases have been detected using IVCM. Many studies have used IVCM to evaluate qualitative and quantitative changes in the corneal nerves associated with dry eye disease, enabling characterization of the morphology, density, and disease or surgically induced alterations of the subbasal nerve plexus.

Summary

IVCM is a valuable and promising complementary method for clinical diagnosis and follow-up in dry eye and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moss SE, Klein R, Klein BE. Long-term incidence of dry eye in an older population. Optom Vis Sci. 2008;85:668–74. https://doi.org/10.1097/OPX.0b013e318181a947.

    Article  PubMed  Google Scholar 

  2. Lemp MA. Epidemiology and classification of dry eye. Adv Exp Med Biol. 1998;438:791–803.

    Article  CAS  PubMed  Google Scholar 

  3. Craig JP, Nelson JD, Azar DT, Belmonte C, Bron AJ, Chauhan SK, et al. TFOS DEWS II report executive summary. Ocul Surf. 2017;15:802–12. https://doi.org/10.1016/j.jtos.2017.08.003.

    Article  PubMed  Google Scholar 

  4. Patel SV, Bourne WM. Corneal endothelial cell loss 9 years after excimer laser keratorefractive surgery. Arch Ophthalmol. 2009;127:1423–7. https://doi.org/10.1001/archophthalmol.2009.192.

    Article  PubMed  PubMed Central  Google Scholar 

  5. •• Villani E, Magnani F, Viola F, Santaniello A, Scorza R, Nucci P, et al. In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom Vis Sci. 2013;90:576–86. https://doi.org/10.1097/OPX.0b013e318294c184. A clinical study indicating the evaluation of the whole ocular surface morpho-functional unit in patients with dry eye.

  6. Efron N. Contact lens-induced changes in the anterior eye as observed in vivo with the confocal microscope. Prog Retin Eye Res. 2007;26:398–436. https://doi.org/10.1016/j.preteyeres.2007.03.003.

    Article  PubMed  Google Scholar 

  7. Villani E, Beretta S, De Capitani M, Galimberti D, Viola F, Ratiglia R. In vivo confocal microscopy of meibomian glands in Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2011;52:933–9. https://doi.org/10.1167/iovs.10-5995.

    Article  PubMed  Google Scholar 

  8. Ban Y, Ogawa Y, Ibrahim OM, Tatematsu Y, Kamoi M, Uchino M, et al. Morphologic evaluation of meibomian glands in chronic graft-versus-host disease using in vivo laser confocal microscopy. Mol Vis. 2011;17:2533–43.

    PubMed  PubMed Central  Google Scholar 

  9. Villani E, Ceresara G, Beretta S, Magnani F, Viola F, Ratiglia R. In vivo confocal microscopy of meibomian glands in contact lens wearers. Invest Ophthalmol Vis Sci. 2011;52:5215–9. https://doi.org/10.1167/iovs.11-7427.

    Article  PubMed  Google Scholar 

  10. Villani E, Canton V, Magnani F, Viola F, Nucci P, Ratiglia R. The aging Meibomian gland: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2013;54:4735–40. https://doi.org/10.1167/iovs.13-11914.

    Article  PubMed  Google Scholar 

  11. Tuominen IS, Konttinen YT, Vesaluoma MH, Moilanen JA, Helinto M, Tervo TM. Corneal innervation and morphology in primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2003;44:2545–9.

    Article  PubMed  Google Scholar 

  12. Villani E, Galimberti D, Viola F, Mapelli C, Del Papa N, Ratiglia R. Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2008;49:560–4. https://doi.org/10.1167/iovs.07-0893.

    Article  PubMed  Google Scholar 

  13. Villani E, Galimberti D, Viola F, Mapelli C, Ratiglia R. The cornea in Sjogren’s syndrome: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2007;48:2017–22. https://doi.org/10.1167/iovs.06-1129.

    Article  PubMed  Google Scholar 

  14. Villani E, Viola F, Sala R, Salvi M, Mapelli C, Curro N, et al. Corneal involvement in Graves’ orbitopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2010;51:4574–8. https://doi.org/10.1167/iovs.10-5380.

    Article  PubMed  Google Scholar 

  15. Akpek EK, Lindsley KB, Adyanthaya RS, Swamy R, Baer AN, McDonnell PJ. Treatment of Sjogren’s syndrome-associated dry eye an evidence-based review. Ophthalmology. 2011;118:1242–52. https://doi.org/10.1016/j.ophtha.2010.12.016.

    Article  PubMed  Google Scholar 

  16. Zhang M, Chen J, Luo L, Xiao Q, Sun M, Liu Z. Altered corneal nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea. 2005;24:818–24.

    Article  PubMed  Google Scholar 

  17. •• Wakamatsu TH, Sato EA, Matsumoto Y, Ibrahim OM, Dogru M, Kaido M, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with Sjogren syndrome. Invest Ophthalmol Vis Sci. 2010;51:144–50. https://doi.org/10.1167/iovs.08-2722. A clinical study shows the alterations of conjunctival morphology in Sjögren syndrome by describing new confocal microscopy parameters such as conjunctival epithelial cell and microcyst densities and levels of inflammatory infiltrate.

  18. Udell IJ, Kenyon KR, Sawa M, Dohlman CH. Treatment of superior limbic keratoconjunctivitis by thermocauterization of the superior bulbar conjunctiva. Ophthalmology. 1986;93:162–6.

    Article  CAS  PubMed  Google Scholar 

  19. Wander AH, Masukawa T. Unusual appearance of condensed chromatin in conjunctival cells in superior limbic keratoconjunctivitis. Lancet. 1981;2(8236):42–3.

    Article  CAS  PubMed  Google Scholar 

  20. Collin HB, Donshik PC, Foster CS, Boruchoff SA, Cavanagh HD. Keratinization of the bulbar conjunctival epithelium in superior limbic keratoconjunctivitis in humans. An electron microscopic study. Acta Ophthalmol. 1978;56:531–43.

    Article  CAS  Google Scholar 

  21. Kojima T, Matsumoto Y, Ibrahim OM, Sato EA, Dogru M, Tsubota K. In vivo evaluation of superior limbic keratoconjunctivitis using laser scanning confocal microscopy and conjunctival impression cytology. Invest Ophthalmol Vis Sci. 2010;51:3986–92. https://doi.org/10.1167/iovs.09-4932.

    Article  PubMed  Google Scholar 

  22. Muller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996;37:476–88.

    CAS  PubMed  Google Scholar 

  23. Oliveira-Soto L, Charman WN. Some possible longer-term ocular changes following excimer laser refractive surgery. Ophthalmic Physiol Opt. 2002;22:274–88.

    Article  PubMed  Google Scholar 

  24. McGowan DP, Lawrenson JG, Ruskell GL. Touch sensitivity of the eyelid margin and palpebral conjunctiva. Acta Ophthalmol. 1994;72:57–60.

    Article  CAS  Google Scholar 

  25. Norn MS. Conjunctival sensitivity in pathological cases, with simultaneous measurement of corneal and lid margin sensitivity. Acta Ophthalmol. 1975;53:450–7.

    Article  CAS  Google Scholar 

  26. McMonnies CW. Incomplete blinking: exposure keratopathy, lid wiper epitheliopathy, dry eye, refractive surgery, and dry contact lenses. Cont Lens Anterior Eye. 2007;30:37–51. https://doi.org/10.1016/j.clae.2006.12.002.

    Article  PubMed  Google Scholar 

  27. Qazi Y, Kheirkhah A, Blackie C, Cruzat A, Trinidad M, Williams C, et al. In vivo detection of clinically non-apparent ocular surface inflammation in patients with meibomian gland dysfunction-associated refractory dry eye symptoms: a pilot study. Eye (Lond). 2015;29:1099–110. https://doi.org/10.1038/eye.2015.103.

    Article  CAS  Google Scholar 

  28. Tomlinson A, Bron AJ, Korb DR, Amano S, Paugh JR, Pearce EI, et al. The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci. 2011;52:2006–49. https://doi.org/10.1167/iovs.10-6997f.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simsek C, Kojima T, Dogru M, Tsubota K. Alterations of murine subbasal corneal nerves after environmental dry eye stress. Invest Ophthalmol Vis Sci. 2018;59:1986–95. https://doi.org/10.1167/iovs.17-23743.

    Article  CAS  PubMed  Google Scholar 

  30. Lienert JP, Tarko L, Uchino M, Christen WG, Schaumberg DA. Long-term natural history of dry eye disease from the patient’s perspective. Ophthalmology. 2016;123:425–33. https://doi.org/10.1016/j.ophtha.2015.10.011.

    Article  PubMed  Google Scholar 

  31. Hosal BM, Ornek N, Zilelioglu G, Elhan AH. Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye (Lond). 2005;19:1276–9. https://doi.org/10.1038/sj.eye.6701760.

    Article  CAS  Google Scholar 

  32. Blodi BA, Byrne KA, Tabbara KF. Goblet cell population among patients with inactive trachoma. Int Ophthalmol. 1988;12:41–5.

    Article  CAS  PubMed  Google Scholar 

  33. Papas EB. Key factors in the subjective and objective assessment of conjunctival erythema. Invest Ophthalmol Vis Sci. 2000;41:687–91.

    CAS  PubMed  Google Scholar 

  34. Wakamatsu TH, Okada N, Kojima T, Matsumoto Y, Ibrahim OM, Dogru M, et al. Evaluation of conjunctival inflammatory status by confocal scanning laser microscopy and conjunctival brush cytology in patients with atopic keratoconjunctivitis (AKC). Mol Vis. 2009;15:1611–9.

    PubMed  PubMed Central  Google Scholar 

  35. Zhivov A, Stachs O, Kraak R, Stave J, Guthoff RF. In vivo confocal microscopy of the ocular surface. Ocul Surf. 2006;4:81–93.

    Article  PubMed  Google Scholar 

  36. Cocho L, Fernandez I, Calonge M, Martinez V, Gonzalez-Garcia MJ, Caballero D, et al. Biomarkers in ocular chronic graft versus host disease: tear cytokine- and chemokine-based predictive model. Invest Ophthalmol Vis Sci. 2016;57:746–58. https://doi.org/10.1167/iovs.15-18615.

    Article  CAS  PubMed  Google Scholar 

  37. Hara S, Kojima T, Ishida R, Goto E, Matsumoto Y, Kaido M, et al. Evaluation of tear stability after surgery for conjunctivochalasis. Optom Vis Sci. 2011;88:1112–8. https://doi.org/10.1097/OPX.0b013e3182223573.

    Article  PubMed  Google Scholar 

  38. Villani E, Galimberti D, Del Papa N, Nucci P, Ratiglia R. Inflammation in dry eye associated with rheumatoid arthritis: cytokine and in vivo confocal microscopy study. Innate Immun. 2013;19:420–7. https://doi.org/10.1177/1753425912471692.

    Article  CAS  PubMed  Google Scholar 

  39. Villani E, Garoli E, Termine V, Pichi F, Ratiglia R, Nucci P. Corneal confocal microscopy in dry eye treated with corticosteroids. Optom Vis Sci. 2015;92:e290–5. https://doi.org/10.1097/OPX.0000000000000600.

    Article  PubMed  Google Scholar 

  40. Efron N, Brennan NA, Morgan PB, Wilson T. Lid wiper epitheliopathy. Prog Retin Eye Res. 2016;53:140–74. https://doi.org/10.1016/j.preteyeres.2016.04.004.

    Article  PubMed  Google Scholar 

  41. Walker PM, Lane KJ, Ousler GW 3rd, Abelson MB. Diurnal variation of visual function and the signs and symptoms of dry eye. Cornea. 2010;29:607–12. https://doi.org/10.1097/ICO.0b013e3181c11e45.

    Article  PubMed  Google Scholar 

  42. Golebiowski B, Chim K, So J, Jalbert I. Lid margins: sensitivity, staining, meibomian gland dysfunction, and symptoms. Optom Vis Sci. 2012;89:1443–9. https://doi.org/10.1097/OPX.0b013e3182693cef.

    Article  PubMed  Google Scholar 

  43. Cornish KS, Gregory ME, Ramaesh K. Systemic cyclosporine A in severe atopic keratoconjunctivitis. Eur J Ophthalmol. 2010;20:844–51.

    Article  PubMed  Google Scholar 

  44. • Simsek C, Kojima T, Nagata T, Dogru M, Tsubota K. Changes in murine subbasal corneal nerves after scopolamine-induced dry eye stress exposure. Invest Ophthalmol Vis Sci. 2019;60:615–23. https://doi.org/10.1167/iovs.18-26318. This animal study indicates that prolonged exposure to dry eye conditions resulted in morphologic alterations and branch patterns of corneal subbasal nerves in wild type mice.

  45. Driver PJ, Lemp MA. Meibomian gland dysfunction. Surv Ophthalmol. 1996;40(5):343–67.

    Article  CAS  PubMed  Google Scholar 

  46. McCulley JP, Shine WE. Meibomian gland function and the tear lipid layer. Ocul Surf. 2003;1:97–106.

    Article  PubMed  Google Scholar 

  47. Messmer EM, Torres Suarez E, Mackert MI, Zapp DM, Kampik A. In vivo confocal microscopy in blepharitis. Klin Monatsbl Augenheilkd. 2005;222:894–900. https://doi.org/10.1055/s-2005-858798.

    Article  CAS  PubMed  Google Scholar 

  48. Matsumoto Y, Sato EA, Ibrahim OM, Dogru M, Tsubota K. The application of in vivo laser confocal microscopy to the diagnosis and evaluation of meibomian gland dysfunction. Mol Vis. 2008;14:1263–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim OM, Matsumoto Y, Dogru M, Adan ES, Wakamatsu TH, Goto T, et al. The efficacy, sensitivity, and specificity of in vivo laser confocal microscopy in the diagnosis of meibomian gland dysfunction. Ophthalmology. 2010;117:665–72. https://doi.org/10.1016/j.ophtha.2009.12.029.

    Article  PubMed  Google Scholar 

  50. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, Palmer J, Weisdorf D, Treister NS, Cheng GS, Kerr H, Stratton P, Duarte RF, McDonald GB, Inamoto Y, Vigorito A, Arai S, Datiles MB, Jacobsohn D, Heller T, Kitko CL, Mitchell SA, Martin PJ, Shulman H, Wu RS, Cutler CS, Vogelsang GB, Lee SJ, Pavletic SZ, Flowers MED National Institutes of Health Consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol Blood Marrow Transplant 2015:21:389–401 e1. doi:https://doi.org/10.1016/j.bbmt.2014.12.001.

  51. Jamil MO, Mineishi S. State-of-the-art acute and chronic GVHD treatment. Int J Hematol. 2015;101:452–66. https://doi.org/10.1007/s12185-015-1785-1.

    Article  CAS  PubMed  Google Scholar 

  52. Shikari H, Antin JH, Dana R. Ocular graft-versus-host disease: a review. Surv Ophthalmol. 2013;58(3):233–51. https://doi.org/10.1016/j.survophthal.2012.08.004.

    Article  PubMed  Google Scholar 

  53. Hessen M, Akpek EK. Ocular graft-versus-host disease. Curr Opin Allergy Clin Immunol. 2012;12:540–7. https://doi.org/10.1097/ACI.0b013e328357b4b9.

    Article  CAS  PubMed  Google Scholar 

  54. Saboo US, Amparo F, Abud TB, Schaumberg DA, Dana R. Vision-related quality of life in patients with ocular graft-versus-host disease. Ophthalmology. 2015;122:1669–74. https://doi.org/10.1016/j.ophtha.2015.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anderson NG, Regillo C. Ocular manifestations of graft versus host disease. Curr Opin Ophthalmol. 2004;15:503–7.

    Article  PubMed  Google Scholar 

  56. He J, Ogawa Y, Mukai S, Saijo-Ban Y, Kamoi M, Uchino M, et al. In vivo confocal microscopy evaluation of ocular surface with graft-versus-host disease-related dry eye disease. Sci Rep. 2017;7:10720. https://doi.org/10.1038/s41598-017-10237-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kheirkhah A, Rahimi Darabad R, Cruzat A, Hajrasouliha AR, Witkin D, Wong N, et al. Corneal epithelial immune dendritic cell alterations in subtypes of dry eye disease: a pilot in vivo confocal microscopic study. Invest Ophthalmol Vis Sci. 2015;56:7179–85. https://doi.org/10.1167/iovs.15-17433.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nutting WB. Hair follicle mites (Acari: Demodicidae) of man. Int J Dermatol. 1976;15:79–98.

    Article  CAS  PubMed  Google Scholar 

  59. Desch C, Nutting WB. Demodex folliculorum (Simon) and D. brevis akbulatova of man: redescription and reevaluation. J Parasitol. 1972;58:169–77.

    Article  CAS  PubMed  Google Scholar 

  60. Norn MS. Demodex folliculorum. Incidence, regional distribution, pathogenicity. Dan Med Bull. 1971;18:14–7.

    CAS  PubMed  Google Scholar 

  61. Rufli T, Mumcuoglu Y. The hair follicle mites Demodex folliculorum and Demodex brevis: biology and medical importance. Rev Dermatol. 1981;162:1–11.

    Article  CAS  Google Scholar 

  62. Roth AM. Demodex folliculorum in hair follicles of eyelid skin. Ann Ophthalmol. 1979;11:37–40.

    CAS  PubMed  Google Scholar 

  63. Erbagci Z, Ozgoztasi O. The significance of Demodex folliculorum density in rosacea. Int J Dermatol. 1998;37:421–5.

    Article  CAS  PubMed  Google Scholar 

  64. Georgala S, Katoulis AC, Kylafis GD, Koumantaki-Mathioudaki E, Georgala C, Aroni K. Increased density of Demodex folliculorum and evidence of delayed hypersensitivity reaction in subjects with papulopustular rosacea. J Eur Acad Dermatol Venereol. 2001;15:441–4.

    Article  CAS  PubMed  Google Scholar 

  65. Rodriguez AE, Ferrer C, Alio JL. Chronic blepharitis and Demodex. Arch Soc Esp Oftalmol. 2005;80:635–42.

    Article  CAS  PubMed  Google Scholar 

  66. Kojima T, Ishida R, Sato EA, Kawakita T, Ibrahim OM, Matsumoto Y, et al. In vivo evaluation of ocular demodicosis using laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52:565–9. https://doi.org/10.1167/iovs.10-5477.

    Article  PubMed  Google Scholar 

  67. Kheirkhah A, Casas V, Li W, Raju VK, Tseng SC. Corneal manifestations of ocular demodex infestation. Am J Ophthalmol. 2007;143:743–9. https://doi.org/10.1016/j.ajo.2007.01.054.

    Article  PubMed  Google Scholar 

  68. Kemal M, Sumer Z, Toker MI, Erdogan H, Topalkara A, Akbulut M. The prevalence of Demodex folliculorum in blepharitis patients and the normal population. Ophthalmic Epidemiol. 2005;12:287–90. https://doi.org/10.1080/092865805910057.

    Article  PubMed  Google Scholar 

  69. Gao YY, Di Pascuale MA, Li W, Liu DT, Baradaran-Rafii A, Elizondo A, et al. High prevalence of Demodex in eyelashes with cylindrical dandruff. Invest Ophthalmol Vis Sci. 2005;46:3089–94. https://doi.org/10.1167/iovs.05-0275.

    Article  PubMed  Google Scholar 

  70. Clifford CW, Fulk GW. Association of diabetes, lash loss, and Staphylococcus aureus with infestation of eyelids by Demodex folliculorum (Acari: Demodicidae). J Med Entomol. 1990;27:467–70.

    Article  CAS  PubMed  Google Scholar 

  71. •• Villani E, Baudouin C, Efron N, Hamrah P, Kojima T, Patel SV, et al. In vivo confocal microscopy of the ocular surface: from bench to bedside. Curr Eye Res. 2014;39:213–31. https://doi.org/10.3109/02713683.2013.842592. A comprehensive review illustrating the advances in confocal microscopy imaging technique for clinical diagnosis and management of the ocular surface and focusing on recent and promising attempts.

  72. Niederer RL, McGhee CN. Clinical in vivo confocal microscopy of the human cornea in health and disease. Prog Retin Eye Res. 2010;29:30–58. https://doi.org/10.1016/j.preteyeres.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kojima.

Ethics declarations

Conflict of Interest

Simsek C, Karalezli A, and Dogru M each declare no potential conflicts of interest.

Kojima T has received personal fees from Santen pharmaceutical, Otsuka pharmaceutical, Alcon, Eye Lens, Carl Zeiss Meditec, and Echo electricity.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cornea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, C., Karalezli, A., Dogru, M. et al. In Vivo Confocal Microscopy Evaluation in Dry Eye and Related Diseases. Curr Ophthalmol Rep 7, 187–195 (2019). https://doi.org/10.1007/s40135-019-00216-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-019-00216-x

Keywords

Navigation