Skip to main content

Normal Anatomy

  • Chapter
  • First Online:
In Vivo Confocal Microscopy in Eye Disease
  • 323 Accesses

Abstract

The advent of In vivo confocal microscopy (IVCM) in the late 1980s have revolutionized our understanding of the anterior eye. Originally designed for research use, the relative non-invasive nature of this technique has made it possible to use this technology in a clinical setting enabling both the basic scientist and the clinician in gaining a better understanding of the normal anatomy and disease process of the cornea, limbus and conjunctiva. The histologic-like images that are obtained by IVCM have provided detail evaluation of the anatomical changes in the corneal and conjunctival epithelium, cornea nerve density, limbal stem cell niche, and corneal endothelium as a result of ageing and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10(4):128–38.

    Article  Google Scholar 

  2. Jalbert I, Stapleton F, Papas E, Sweeney DF, Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003;87(2):225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tiffany JM. The normal tear film. Dev Ophthalmol. 2008;41:1–20.

    Article  PubMed  Google Scholar 

  4. Pritchard N, Edwards K, Efron N. Non-contact laser-scanning confocal microscopy of the human cornea in vivo. Cont Lens Anterior Eye. 2014;37(1):44–8.

    Article  PubMed  Google Scholar 

  5. Guthoff RF, Baudouin C, Stave J. Atlas of confocal laser scanning in-vivo microscopy in ophthalmology. Springer Science & Business Media; 2007.

    Google Scholar 

  6. Mathers WD, Lane JA, Zimmerman MB. Assessment of the tear film with tandem scanning confocal microscopy. Cornea. 1997;16(2):162–8.

    Article  CAS  PubMed  Google Scholar 

  7. Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea - a major review. Clin Exp Ophthalmol. 2009;37(1):100–17.

    Article  PubMed  Google Scholar 

  8. Stachs O, Guthoff RF, Aumann S. In vivo confocal scanning laser microscopy. In: Bille JF, editor. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Cham (CH): Springer; 2019. p. 263–84.

    Chapter  Google Scholar 

  9. Alzubaidi R, Sharif MS, Qahwaji R, Ipson S, Brahma A. In vivo confocal microscopic corneal images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: a review study. Br J Ophthalmol. 2016;100(1):41–55.

    Article  PubMed  Google Scholar 

  10. Hazlett LD, Spann B, Wells P, Berk RS. Desquamation of the corneal epithelium in the immature mouse: a scanning and transmission microscopy study. Exp Eye Res. 1980;31(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  11. Szaflik JP. Comparison of in vivo confocal microscopy of human cornea by white light scanning slit and laser scanning systems. Cornea. 2007;26(4):438–45.

    Article  PubMed  Google Scholar 

  12. Mustonen RK, McDonald MB, Srivannaboon S, Tan AL, Doubrava MW, Kim CK. Normal human corneal cell populations evaluated by in vivo scanning slit confocal microscopy. Cornea. 1998;17(5):485–92.

    Article  CAS  PubMed  Google Scholar 

  13. Mocan MC, Irkec M. Fluorescein enhanced confocal microscopy in vivo for the evaluation of corneal epithelium. Clin Exp Ophthalmol. 2007;35(1):38–43.

    Article  PubMed  Google Scholar 

  14. Eckard A, Stave J, Guthoff RF. In vivo investigations of the corneal epithelium with the confocal Rostock Laser Scanning Microscope (RLSM). Cornea. 2006;25(2):127–31.

    Article  PubMed  Google Scholar 

  15. Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E. Chapter 1 – Anatomy of the eye and orbit. In: Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E, editors. The eye. 4th ed. W.B. Saunders; 2016. p. 1–102.e2.

    Google Scholar 

  16. Popper M, Morgado AM, Quadrado MJ, Van Best JA. Corneal cell density measurement in vivo by scanning slit confocal microscopy: method and validation. Ophthalmic Res. 2004;36(5):270–6.

    Article  PubMed  Google Scholar 

  17. Niederer RL, Perumal D, Sherwin T, McGhee CN. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol. 2007;91(9):1165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi A, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy of Bowman’s layer of the cornea. Ophthalmology. 2006;113(12):2203–8.

    Article  PubMed  Google Scholar 

  19. Yokogawa H, Kobayashi A, Sugiyama K. Mapping of normal corneal K-structures by in vivo laser confocal microscopy. Cornea. 2008;27(8):879–83.

    Article  PubMed  Google Scholar 

  20. Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243(10):1056–61.

    Article  PubMed  Google Scholar 

  21. Sindt CW, Grout TK, Critser DB, Kern JR, Meadows DL. Dendritic immune cell densities in the central cornea associated with soft contact lens types and lens care solution types: a pilot study. Clin Ophthalmol. 2012;6:511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, et al. In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun. 2013;19(4):348–54.

    Article  PubMed  Google Scholar 

  23. Liu M, Gao H, Wang T, Wang S, Li S, Shi W. An essential role for dendritic cells in vernal keratoconjunctivitis: analysis by laser scanning confocal microscopy. Clin Exp Allergy. 2014;44(3):362–70.

    Article  PubMed  Google Scholar 

  24. Resch MD, Marsovszky L, Németh J, Bocskai M, Kovács L, Balog A. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J Ophthalmol. 2015;2015:543835.

    PubMed  PubMed Central  Google Scholar 

  25. Wu LQ, Cheng JW, Cai JP, Le QH, Ma XY, Gao LD, et al. Observation of corneal langerhans cells by in vivo confocal microscopy in thyroid-associated ophthalmopathy. Curr Eye Res. 2016;41(7):927–32.

    Article  CAS  PubMed  Google Scholar 

  26. Tepelus TC, Chiu GB, Maram J, Huang J, Chopra V, Sadda SR, et al. Corneal features in ocular graft-versus-host disease by in vivo confocal microscopy. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2389–97.

    Article  PubMed  Google Scholar 

  27. Cavalcanti BM, Cruzat A, Sahin A, Pavan-Langston D, Samayoa E, Hamrah P. In vivo confocal microscopy detects bilateral changes of corneal immune cells and nerves in unilateral herpes zoster ophthalmicus. Ocul Surf. 2018;16(1):101–11.

    Article  PubMed  Google Scholar 

  28. Patel DV, Zhang J, McGhee CNJ. In vivo confocal microscopy of the inflamed anterior segment: a review of clinical and research applications. Clin Exp Ophthalmol. 2019;47(3):334–45.

    Article  PubMed  Google Scholar 

  29. Maurice DM. The structure and transparency of the cornea. J Physiol. 1957;136(2):263–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001;42(2):333–9.

    CAS  PubMed  Google Scholar 

  31. Berlau J, Becker HH, Stave J, Oriwol C, Guthoff RF. Depth and age-dependent distribution of keratocytes in healthy human corneas: a study using scanning-slit confocal microscopy in vivo. J Cataract Refract Surg. 2002;28(4):611–6.

    Article  PubMed  Google Scholar 

  32. Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001;20(4):374–84.

    Article  CAS  PubMed  Google Scholar 

  33. Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol. 2009;93(7):853–60.

    Article  CAS  PubMed  Google Scholar 

  34. Patel DV, McGhee CN. In vivo laser scanning confocal microscopy confirms that the human corneal sub-basal nerve plexus is a highly dynamic structure. Invest Ophthalmol Vis Sci. 2008;49(8):3409–12.

    Article  PubMed  Google Scholar 

  35. Erie JC, McLaren JW, Hodge DO, Bourne WM. The effect of age on the corneal subbasal nerve plexus. Cornea. 2005;24(6):705–9.

    Article  PubMed  Google Scholar 

  36. Patel DV, McGhee CN. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2005;46(12):4485–8.

    Article  PubMed  Google Scholar 

  37. Petropoulos IN, Alam U, Fadavi H, Marshall A, Asghar O, Dabbah MA, et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophthalmol Vis Sci. 2014;55(4):2071–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Petropoulos IN, Al-Mohammedi A, Chen X, Ferdousi M, Ponirakis G, Kemp H, et al. The utility of corneal nerve fractal dimension analysis in peripheral neuropathies of different etiology. Transl Vis Sci Technol. 2020;9(9):43.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Simo Mannion L, Tromans C, O'Donnell C. An evaluation of corneal nerve morphology and function in moderate keratoconus. Cont Lens Anterior Eye. 2005;28(4):185–92.

    Article  PubMed  Google Scholar 

  40. Benítez del Castillo JM, Wasfy MA, Fernandez C, Garcia-Sanchez J. An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Invest Ophthalmol Vis Sci. 2004;45(9):3030–5.

    Article  PubMed  Google Scholar 

  41. Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol. 1982;100(12):1942–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hollingsworth J, Perez-Gomez I, Mutalib HA, Efron N. A population study of the normal cornea using an in vivo, slit-scanning confocal microscope. Optom Vis Sci. 2001;78(10):706–11.

    Article  CAS  PubMed  Google Scholar 

  43. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997;38(3):779–82.

    CAS  PubMed  Google Scholar 

  44. Salvetat ML, Zeppieri M, Miani F, Parisi L, Felletti M, Brusini P. Comparison between laser scanning in vivo confocal microscopy and noncontact specular microscopy in assessing corneal endothelial cell density and central corneal thickness. Cornea. 2011;30(7):754–9.

    Article  PubMed  Google Scholar 

  45. Klais CMC, Bühren J, Kohnen T. Comparison of endothelial cell count using confocal and contact specular microscopy. Ophthalmologica. 2003;217(2):99–103.

    Article  PubMed  Google Scholar 

  46. Chiou AG, Kaufman SC, Beuerman RW, Ohta T, Soliman H, Kaufman HE. Confocal microscopy in cornea guttata and Fuchs’ endothelial dystrophy. Br J Ophthalmol. 1999;83(2):185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44(5):415–25.

    Article  CAS  PubMed  Google Scholar 

  48. Miri A, Al-Aqaba M, Otri AM, Fares U, Said DG, Faraj LA, et al. In vivo confocal microscopic features of normal limbus. Br J Ophthalmol. 2012;96(4):530–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Hau .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hau, S. (2022). Normal Anatomy. In: In Vivo Confocal Microscopy in Eye Disease. Springer, London. https://doi.org/10.1007/978-1-4471-7517-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7517-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7516-2

  • Online ISBN: 978-1-4471-7517-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics