Skip to main content

Advertisement

Log in

Dual-Energy CT in the Acute Abdomen

  • Dual Energy CT (S Nicolaou, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Multi-detector CT (MDCT) plays a crucial role in the evaluation of acutely ill or injured patients especially in patients with an acute abdomen. MDCT has become the initial imaging modality in the emergency department for many acute conditions given the widespread availability, speed of acquisition, and high image quality. With the advent of dual-energy CT, simultaneous scanning with varying kVp spectra has the potential to characterize different materials based on their composition. A broad spectrum of clinical applications has been developed with increasing literature supporting the use of DECT throughout the body including application in the acutely ill patient. In this article, we will discuss the utility of DECT and illustrate examples of various applications in the acute abdomen in the emergency setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Im AL, Lee YH, Bang DH, Yoon KH, Park SH. Dual energy CT in patients with acute abdomen; is it possible for virtual non-enhanced images to replace true non-enhanced images? Emerg Radiol. 2013;20(6):475–83.

    Article  PubMed  Google Scholar 

  2. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics. 2014;34(1):589–612.

    Article  PubMed  Google Scholar 

  3. Aran S, Daftari Besheli L, Karcaaltincaba M, Gupta R, Flores EJ, Abujudeh HH. Applications of dual-energy CT in emergency radiology. Am J Roentgenol. 2014;202(4):W314–24.

    Article  Google Scholar 

  4. Aran S, Shaqdan KW, Abujudeh HH. Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations. Emerg Radiol. 2014;21:391–405.

    Article  PubMed  Google Scholar 

  5. Sudarski S, Apfaltrer P, Nance JW, Schneider D, Meyer M, Schoenberg SO, et al. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur J Radiol. 2013;82(10):e574–81.

    Article  PubMed  Google Scholar 

  6. Yuan R, Shuman WP, Earls JP, Hague CJ, Scott-moncrieff A, Ellis JD, et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging : comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology. 2012;262(1):290–7.

    Article  PubMed  Google Scholar 

  7. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fuentes-Orrego JM, Pinho D, Kulkarni NM, Ghoshhajra BB, Sahani DV. New and evolving concepts in CT for abdominal vascular imaging. RadioGraphics. 2014;34:1363–84.

    Article  PubMed  Google Scholar 

  9. • Marin D, Fananapazir G, Mileto A, Choudhury KR, Wilson JM, Nelson RC. Dual-energy multi-detector row CT with virtual monochromatic imaging for improving patient-to-patient uniformity of aortic enhancement during CT angiography: an in vitro and in vivo study. Radiology. 2014; 272(3):895–902. DECT can improve uniformity in enhancement of arteries and this ability can improve image quality, improve diagnostic abilities, and potentially reduce radiation dose as well as contrast dose.

  10. Boll DT, Patil NA, Paulson EK, Merkle EM, Simmons WN, Pierre SA, Preminger GM. Renal stone assessment with and advanced postprocessing techniques: improved characterization of renal stone composition—pilot study. Radiology. 2009;250(3):813–20.

    Article  PubMed  Google Scholar 

  11. Kambadakone AR, Eisner BH, Catalano OA, Sahani DV. New and evolving concepts in the imaging and management of urolithiasis: urologists’ perspective. Radiographics. 2010;30(3):603–23.

    Article  PubMed  Google Scholar 

  12. Eisner BH, McQuaid JW, Hyams E, Matlaga BR. Nephrolithiasis: what surgeons need to know. Am J Roentgenol. 2011;196(6):1274–8.

    Article  Google Scholar 

  13. Smith RC, Verga M, McCarthy SRA. Value of acute flank helical pain: of unenhanced. Am J Roentgenol. 1996;166:97–101.

    Article  CAS  Google Scholar 

  14. Primak AN, Fletcher JG, Vrtiska TJ, Dzyubak OP, Lieske JC, Jackson ME, et al. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol. 2007;14(12):1441–7.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wang J, Qu M, Duan X, Takahashi N, Kawashima A, Leng S, et al. Characterisation of urinary stones in the presence of iodinated contrast medium using dual-energy CT: a phantom study. Eur Radiol. 2012;22(12):2589–96.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ascenti G, Siragusa C, Racchiusa S, Ielo I, Privitera G, Midili F, et al. Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. Am J Roentgenol. 2010;195(4):953–8.

    Article  Google Scholar 

  17. Kulkarni NM, Eisner BH, Pinho DF, Joshi MC, Kambadakone AR, Sahani DV. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37(1):37–45.

    Article  PubMed  Google Scholar 

  18. Hidas G, Eliahou R, Coulon P, Sosna J. Determination of renal stone composition with dual-energy CT. In vivo analysis and comparison with X-ray diffraction. Radiology. 2010;257(2):394–401.

    Article  PubMed  Google Scholar 

  19. Takahashi N, Vrtiska TJ, Hartman RP, Primak AN, Fletcher JG, et al. Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology. 2010;256(1):184–90.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mangold S, Thomas C, Fenchel M, Vuust M, Krauss B, Ketelsen D, et al. Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology. 2012;264(1):119–25.

    Article  PubMed  Google Scholar 

  21. Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 2008;249(1):16–31.

    Article  PubMed  Google Scholar 

  22. Mileto A, Nelson RC, Samei E, Jaffe TA, Paulson EK, Barina A, et al. Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology. 2014;272(3):767–76.

    Article  PubMed  Google Scholar 

  23. Neville AM, Miller CM, Merkle EM, Paulson EK, Boll DT. Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology. 2011;259(1):173–83.

    Article  PubMed  Google Scholar 

  24. Tappouni R, Kissane J, Sarwani N, Lehman EB. Pseudoenhancement of renal cysts: influence of lesion size, lesion location, slice thickness, and number of MDCT detectors. Am J Roentgenol. 2012;198(1):133–7.

    Article  Google Scholar 

  25. Birnbaum BA, Hindman N, Lee J, Babb JS. Renal cyst pseudoenhancement : influence of multidetector ct reconstruction algorithm and scanner type in phantom model. Radiology. 2007;244(3):767–75.

    Article  PubMed  Google Scholar 

  26. • Marin D, Boll DT, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42. This review article provides an accurate and succinct review of the basic princples of DECT and illustrates clinical applications in the abdomen and pelvis currently used in clinical practice.

  27. Mileto A, Mazziotti S, Gaeta M, Bottari A, Zimbaro F, Giardina C, et al. Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol. 2012;67(4):334–9.

    Article  PubMed  Google Scholar 

  28. Kim JE, Lee JM, Baek JH, Han JK, Choi BI. Initial assessment of dual-energy CT in patients with gallstones or bile duct stones: can virtual nonenhanced images replace true nonenhanced images? Am J Roentgenol. 2012;198(4):817–24.

    Article  Google Scholar 

  29. Bauer RW, Schulz JR, Zedler B, Graf TG, Vogl TJ. Compound analysis of gallstones using dual energy computed tomography–results in a phantom model. Eur J Radiol. 2010;75(1):e74–80.

    Article  PubMed  Google Scholar 

  30. Danzinger RG, Hofmann AF, Schoenfield LJ, Thistle JL. Dissolution of cholesterol gallstones by chenodeoxycholic acid. N Engl J Med. 1972;286(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hickman MS. Computed tomographic analysis of gallstones. Arch Surg. 1986;121:286–91.

    Article  Google Scholar 

  32. Barakos JA, Ralls PW, Lapin SA, Johnson MB, Radin DR, Colletti PM, et al. Cholelithiasis: evaluation with CT. Radiology. 1987;162:415–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lovy AJ, Rosenblum JK, Levsky JM, Godelman A, Zalta B, Jain VR, et al. Acute aortic syndromes: a second look at dual-phase CT. Am J Roentgenol. 2013;200(4):805–11.

    Article  Google Scholar 

  34. Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, et al. Endoleaks after endovascular abdominal aortic aneurysm repair : detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91.

    Article  PubMed  Google Scholar 

  35. Lee YK, Seo JB, Jang YM, Do KH, Kim SS, Lee JS, et al. Acute and chronic complications of aortic intramural hematoma on follow-up computed tomography: incidence and predictor analysis. J Comput Assist Tomogr. 2007;31(3):435–40.

    Article  PubMed  Google Scholar 

  36. Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol. 2013;23:351–9.

    Article  PubMed  Google Scholar 

  37. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.

    Article  PubMed  Google Scholar 

  38. Numburi UD, Schoenhagen P, Flamm SD, Greenberg RK, Primak AN, Saba OI, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. Am J Roentgenol. 2010;195(2):486–93.

    Article  Google Scholar 

  39. Chandarana H, Godoy MCB. Abdominal aorta: evaluation with multidetector CT after endovascular repair of aneurysms—initial observations. Radiology. 2008;249(2):692–700.

    Article  PubMed  Google Scholar 

  40. Goizarian J, Struyven J, Abada HT, Wery D, Dussaussois L, Madani A, Ferreira J, Dereume JP. Endovascular aortic stent-grafts: transcatheter embolization of persistent perigraft leaks. Radiology. 1997;202:731–4.

    Article  Google Scholar 

  41. Rozenblit AM, Patlas M, Rosenbaum AT, Okhi T, Veith FJ, Laks MP, et al. Detection of endoleaks after endovascular repair of abdominal aortic aneurysm: value of unenhanced and delayed helical CT acquisitions. Radiology. 2003;227(2):426–33.

    Article  PubMed  Google Scholar 

  42. Iezzi R, Cotroneo AR, Filippone A, Di Fabio F, Quinto F, Colosimo C. Multidetector CT in abdominal aortic aneurysm treated with endovascular repair : are unenhanced and delayed phase enhanced images effective for endoleak detection? Radiology. 2006;241(3):915–21.

    Article  PubMed  Google Scholar 

  43. Sommer WH, Graser A, Becker CR, Clevert DA, Reiser MF, Nikolaou K, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol. 2010;21(3):315–21.

    Article  PubMed  Google Scholar 

  44. • Lee YH, Park KK, Song H-T, Kim S, Suh J-S. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol. 2012;22(6):1331–40. The clinical utility of DECT in the musculoskeletal system has improved image quality in the particularly difficult scenario of imaging arthroplasties due to metal-related artifacts. Utilizing MARS has reduced metal-related artifacts and the prosthesis and periprosthetic regions now have improved delineation.

  45. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TRC. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.

    Article  PubMed  Google Scholar 

  46. Soto JA, Anderson SW. Multidetector CT of blunt abdominal trauma. Radiology. 2012;265(3):678–93.

    Article  PubMed  Google Scholar 

  47. Anderson SW, Varghese JC, Lucey BC, Burke PA, Hirsch EF, Soto JA. Blunt splenic trauma: delayed-phase CT for differentiation of active hemorrhage from contained vascular injury in patients. Radiology. 2007;243(1):88–95.

    Article  PubMed  Google Scholar 

  48. Mulligan JM, Cagiannos I, Collins JP, Millward SF. Ureteropelvic junction disruption secondary to blunt trauma: excretory phase imaging (delayed films) should help prevent a missed diagnosis. J Urol. 1998;159:67–70.

    Article  CAS  PubMed  Google Scholar 

  49. Uyeda JW, Lebedis CA, Penn DR, Soto JA, Anderson SW. Active hemorrhage and vascular injuries in splenic trauma : utility of the arterial phase in multidetector. Radiology. 2014;270(1):99–106.

    Article  PubMed  Google Scholar 

  50. Boscak AR, Mirvis SE, Fleiter TR, Miller LA, Sliker CW, Steenburg SD, et al. Optimizing trauma multidetector CT protocol for blunt splenic injury: need for arterial and portal venous phase scans. Radiology. 2013;268(1):79–88.

    Article  PubMed  Google Scholar 

  51. Anderson SW, Soto JA, Lucey BC, Burke PA, Hirsch EF, Rhea JT. Blunt trauma: feasibility and clinical utility of pelvic CT angiography performed with 64-detector row CT. Radiology. 2008;246(2):410–9.

    Article  PubMed  Google Scholar 

  52. Yeh BM, Shepherd JA, Wang ZJ, Teh HS, Hartman RP, Prevrhal S. Dual-energy and low-kVp CT in the abdomen. Am J Roentgenol. 2009;193(1):47–54.

    Article  Google Scholar 

  53. Uyeda J, Anderson SW, Kertesz J, Soto JA. Pelvic CT angiography: application to blunt trauma using 64 MDCT. Emerg Radiol. 2010;17(2):131–7.

    Article  PubMed  Google Scholar 

  54. Van Leerdam ME, Vreeburg EM, Rauws EAJ, Tijssen JGP, Reitsma JB, Tytgat GNJ. Acute upper GI bleeding: did anything change? Am J Gastroenterol. 2003;98(7):1494–9.

    Google Scholar 

  55. • Sun H, Xue H-D, Wang Y-N, Qian J-M, Yu J-C, Zhu F, et al. Dual-source dual-energy computed tomography angiography for active gastrointestinal bleeding: a preliminary study. Clin Radiol. 2013;68(2):139–47. DECT can also be applied to active gastrointestinal bleeding both in the detection and localization of the bleeding source with a low radiation dose.

  56. Marti M, Artigas JM, Garzón G, Álvarez-sala R, Soto JA. Acute lower intestinal bleeding: feasibility and diagnostic performance of CT angiography. Radiology. 2012;262(1):109–16.

    Article  PubMed  Google Scholar 

  57. Kennedy DW, Laing CJ, Tseng LH, Rosenblum DI, Tamarkin SW. Detection of active gastrointestinal hemorrhage with CT angiography: a 4(1/2)-year retrospective review. J Vasc Interv Radiol. 2010;21(6):848–55.

    Article  PubMed  Google Scholar 

  58. Ernst O, Bulois P, Saint-Drenant S, Leroy C, Paris J-C, Sergent G. Helical CT in acute lower gastrointestinal bleeding. Eur Radiol. 2003;13(1):114–7.

    PubMed  Google Scholar 

  59. Scheffel H, Pfammatter T, Wildi S, Bauerfeind P, Marincek B, Alkadhi H. Acute gastrointestinal bleeding: detection of source and etiology with multi-detector-row CT. Eur Radiol. 2007;17(6):1555–65.

    Article  PubMed  Google Scholar 

  60. • Potretzke TA, Brace CL, Lubner MG, Sampson LA, Willey BJ, Lee FT. Early small-bowel ischemia: dual energy CT improves conspicuity compared with conventional CT in a swine model. Radiology. 2014;275:119–26. The clinical application of DECT has expanded to evaluate for small bowel ischemia with increased conspicuity compared to conventional single energy CT. Evaluation of bowel enhancement has posed a diagnostic challenge with single energy CT.

  61. Brandt LJ, Boley SJ. AGA technical review on intestinal ischemia. Gastroenterology. 2000;118(5):954–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer W. Uyeda.

Additional information

This article is part of the Topical Collection on Dual Energy CT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyeda, J.W., Patino, M. & Sahani, D.V. Dual-Energy CT in the Acute Abdomen. Curr Radiol Rep 3, 20 (2015). https://doi.org/10.1007/s40134-015-0099-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0099-7

Keywords

Navigation