Skip to main content

Advertisement

Log in

Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

Recent advances in computed tomography (CT) technology allow for acquisition of two CT datasets with different X-ray spectra. There are different dual-energy computed tomography (DECT) technical approaches such as: the dual-source CT, the fast kilovoltage-switching method, and the sandwich detectors technique. There are various postprocessing algorithms that are available to provide clinically relevant spectral information. There are several clinical applications of DECT that are easily accessible in the emergency setting. In this review article, we aim to provide the emergency radiologist with a discussion on how this new technology works and how some of its applications can be useful in the emergency room setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Yu L, Primak AN, McCollough CH (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609

    Article  PubMed Central  PubMed  Google Scholar 

  3. Godoy MC, Naidich DP, Marchiori E, Assadourian B, Leidecker C, Schmidt B et al (2009) Basic principles and postprocessing techniques of dual-energy CT: illustrated by selected congenital abnormalities of the thorax. J Thorac Imaging 24:152–159

    Article  PubMed  Google Scholar 

  4. Kang MJ, Park CM, Lee CH, Goo JM, Lee HJ (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics: Rev Publ Radiol Soc N Am Inc 30:685–698

    Article  Google Scholar 

  5. Yeh BM, Shepherd JA, Wang ZJ, Teh HS, Hartman RP, Prevrhal S (2009) Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol 193:47–54

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vlahos I, Godoy MC, Naidich DP (2010) Dual-energy computed tomography imaging of the aorta. J Thorac Imaging 25:289–300

    Article  PubMed  Google Scholar 

  7. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  8. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  9. Kruger RA, Riederer SJ, Mistretta CA (1977) Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys 4:244–249

    Article  CAS  PubMed  Google Scholar 

  10. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  11. Kalender WA (2005) CT: the unexpected evolution of an imaging modality. Eur Radiol 15(Suppl 4):D21–D24

    Article  PubMed  Google Scholar 

  12. Remy-Jardin M, Faivre JB, Pontana F, Hachulla AL, Tacelli N, Santangelo T et al (2010) Thoracic applications of dual energy. Radiol Clin N Am 48:193–205

    Article  PubMed  Google Scholar 

  13. Fritz J, Efron DT, Fishman EK (2013) State-of-the-art 3DCT angiography assessment of lower extremity trauma: typical findings, pearls, and pitfalls. Emerg Radiol 20:175–184

    Article  PubMed  Google Scholar 

  14. Kang DK, Schoepf UJ, Bastarrika G, Nance JW Jr, Abro JA, Ruzsics B (2010) Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR 31:276–291

    Article  PubMed  Google Scholar 

  15. Lu GM, Wu SY, Yeh BM, Zhang LJ (2010) Dual-energy computed tomography in pulmonary embolism. Br J Radiol 83:707–718

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bauer RW, Frellesen C, Renker M, Schell B, Lehnert T, Ackermann H et al (2011) Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism—correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol 21:1914–1921

    Article  PubMed  Google Scholar 

  17. Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  18. Megibow AJ, Sahani D (2012) Best practice: implementation and use of abdominal dual-energy CT in routine patient care. AJR Am J Roentgenol 199:S71–S77

    Article  PubMed  Google Scholar 

  19. Szczykutowicz TP, Chen GH (2010) Dual energy CT using slow kVp switching acquisition and prior image constrained compressed sensing. Phys Med Biol 55:6411–6429

    Article  PubMed  Google Scholar 

  20. Krasnicki T, Podgorski P, Guzinski M, Czarnecka A, Tupikowski K, Garcarek J et al (2012) Novel clinical applications of dual energy computed tomography. Adv Clin Exp Med Off Organ Wroclaw Med Univ 21:831–841

    Google Scholar 

  21. Karcaaltincaba M, Aktas A (2011) Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 17:181–194

    PubMed  Google Scholar 

  22. Halpern EJ, Halpern DJ, Yanof JH, Amin-Spector S, Fischman D, Aviram G et al (2009) Is coronary stent assessment improved with spectral analysis of dual energy CT? Acad Radiol 16:1241–1250

    Article  PubMed  Google Scholar 

  23. Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425

    Article  CAS  PubMed  Google Scholar 

  24. Gorgos A, Remy-Jardin M, Duhamel A, Faivre JB, Tacelli N, Delannoy V et al (2009) Evaluation of peripheral pulmonary arteries at 80 kV and at 140 kV: dual-energy computed tomography assessment in 51 patients. J Comput Assist Tomogr 33:981–986

    Article  PubMed  Google Scholar 

  25. Holmes DR 3rd, Fletcher JG, Apel A, Huprich JE, Siddiki H, Hough DM et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mahnken AH, Stanzel S, Heismann B (2009) Spectral rhoZ-projection method for characterization of body fluids in computed tomography: ex vivo experiments. Acad Radiol 16:763–769

    Article  PubMed  Google Scholar 

  27. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  28. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  29. Chandarana H, Godoy MC, Vlahos I, Graser A, Babb J, Leidecker C et al (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology 249:692–700

    Article  PubMed  Google Scholar 

  30. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15

    Article  PubMed  Google Scholar 

  31. Kaza RK, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197:1375–1381

    Article  PubMed  Google Scholar 

  32. Boroto K, Remy-Jardin M, Flohr T, Faivre JB, Pansini V, Tacelli N et al (2008) Thoracic applications of dual-source CT technology. Eur J Radiol 68:375–384

    Article  PubMed  Google Scholar 

  33. Thieme SF, Johnson TR, Reiser MF, Nikolaou K (2010) Dual-energy lung perfusion computed tomography: a novel pulmonary functional imaging method. Semin Ultrasound CT MR 31:301–308

    Article  PubMed  Google Scholar 

  34. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ (2012) Dual-energy CT of the lung. AJR Am J Roentgenol 199:S40–S53

    Article  PubMed  Google Scholar 

  35. Fink C, Johnson TR, Michaely HJ, Morhard D, Becker C, Reiser M et al (2008) Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. RoFo Fortschritte Gebiete Rontgenstrahlen Nuklearmedizin 180:879–883

    CAS  Google Scholar 

  36. Pontana F, Faivre JB, Remy-Jardin M, Flohr T, Schmidt B, Tacelli N et al (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15:1494–1504

    Article  PubMed  Google Scholar 

  37. Zhang LJ, Yang GF, Zhao YE, Zhou CS, Lu GM (2009) Detection of pulmonary embolism using dual-energy computed tomography and correlation with cardiovascular measurements: a preliminary study. Acta Radiol 50:892–901

    Article  PubMed  Google Scholar 

  38. Chae EJ, Seo JB, Jang YM, Krauss B, Lee CW, Lee HJ et al (2010) Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. AJR Am J Roentgenol 194:604–610

    Article  PubMed  Google Scholar 

  39. George RT, Jerosch-Herold M, Silva C, Kitagawa K, Bluemke DA, Lima JA et al (2007) Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Investig Radiol 42:815–822

    Article  Google Scholar 

  40. Arnoldi E, Lee YS, Ruzsics B, Weininger M, Spears JR, Rowley CP et al (2011) CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr 5:421–429

    Article  PubMed  Google Scholar 

  41. Nance JW Jr, Bastarrika G, Kang DK, Ruzsics B, Vogt S, Schmidt B et al (2011) High-temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr 35:119–125

    Article  PubMed  Google Scholar 

  42. Vliegenthart R, Pelgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ (2012) Dual-energy CT of the heart. AJR Am J Roentgenol 199:S54–S63

    Article  PubMed  Google Scholar 

  43. Weininger M, Schoepf UJ, Ramachandra A, Fink C, Rowe GW, Costello P et al (2012) Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol 81:3703–3710

    Article  PubMed  Google Scholar 

  44. Rubinshtein R, Miller TD, Williamson EE, Kirsch J, Gibbons RJ, Primak AN et al (2009) Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart 95:1419–1422

    Article  CAS  PubMed  Google Scholar 

  45. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18:2414–2424

    Article  PubMed  Google Scholar 

  46. Ruzsics B, Chiaramida SA, Schoepf UJ (2009) Images in cardiology: dual-energy computed tomography imaging of myocardial infarction. Heart 95:180

    Article  CAS  PubMed  Google Scholar 

  47. Ruzsics B, Schwarz F, Schoepf UJ, Lee YS, Bastarrika G, Chiaramida SA et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 104:318–326

    Article  PubMed  Google Scholar 

  48. Kim MJ, Park CH, Choi SJ, Hwang KH, Kim HS (2009) Multidetector computed tomography chest examinations with low-kilovoltage protocols in adults: effect on image quality and radiation dose. J Comput Assist Tomogr 33:416–421

    Article  PubMed  Google Scholar 

  49. Szucs-Farkas Z, Kurmann L, Strautz T, Patak MA, Vock P, Schindera ST (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Investig Radiol 43:871–876

    Article  Google Scholar 

  50. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907

    Article  PubMed  Google Scholar 

  51. Matsuoka S, Hunsaker AR, Gill RR, Oliva IB, Trotman-Dickenson B, Jacobson FL et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR Am J Roentgenol 192:1651–1656

    Article  PubMed  Google Scholar 

  52. Nakayama Y, Awai K, Funama Y, Liu D, Nakaura T, Tamura Y et al (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol 187:W490–W497

    Article  PubMed  Google Scholar 

  53. Maturen KE, Kaza RK, Liu PS, Quint LE, Khalatbari SH, Platt JF (2012) “Sweet spot” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr 36:83–87

    Article  PubMed Central  PubMed  Google Scholar 

  54. Maturen KE, Kleaveland PA, Kaza RK, Liu PS, Quint LE, Khalatbari SH et al (2011) Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging. J Comput Assist Tomogr 35:742–746

    Article  PubMed  Google Scholar 

  55. Vlahos I, Chung R, Nair A, Morgan R (2012) Dual-energy CT: vascular applications. AJR Am J Roentgenol 199:S87–S97

    Article  PubMed  Google Scholar 

  56. Heye T, Nelson RC, Ho LM, Marin D, Boll DT (2012) Dual-energy CT applications in the abdomen. AJR Am J Roentgenol 199:S64–S70

    Article  PubMed  Google Scholar 

  57. Thomas C, Patschan O, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H et al (2009) Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 19:1553–1559

    Article  CAS  PubMed  Google Scholar 

  58. Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199:S78–S86

    Article  PubMed  Google Scholar 

  59. Choi HK, Al-Arfaj AM, Eftekhari A, Munk PL, Shojania K, Reid G et al (2009) Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 68:1609–1612

    Article  CAS  PubMed  Google Scholar 

  60. Greer DM, Koroshetz WJ, Cullen S, Gonzalez RG, Lev MH (2004) Magnetic resonance imaging improves detection of intracerebral hemorrhage over computed tomography after intra-arterial thrombolysis. Stroke J Cereb Circ 35:491–495

    Article  Google Scholar 

  61. Gupta R, Phan CM, Leidecker C, Brady TJ, Hirsch JA, Nogueira RG et al (2010) Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257:205–211

    Article  PubMed  Google Scholar 

  62. Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R (2012) Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol 33:1088–1094

    Article  CAS  PubMed  Google Scholar 

  63. Ferda J, Novak M, Mirka H, Baxa J, Ferdova E, Bednarova A et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19:2518–2522

    Article  PubMed  Google Scholar 

  64. Geyer LL, Koerner M, Wirth S, Mueck FG, Reiser MF, Linsenmaier U (2013) Polytrauma: optimal imaging and evaluation algorithm. Semin Musculoskelet Radiol 17:371–379

    Article  PubMed  Google Scholar 

  65. Nicolaou S, Eftekhari A, Sedlic T, Hou DJ, Mudri MJ, Aldrich J et al (2008) The utilization of dual source CT in imaging of polytrauma. Eur J Radiol 68:398–408

    Article  CAS  PubMed  Google Scholar 

  66. Bahner ML, Bengel A, Brix G, Zuna I, Kauczor HU, Delorme S (2005) Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Investig Radiol 40:229–234

    Article  Google Scholar 

  67. Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH (2009) The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J Radiol Off J Korean Radiol Soc 10:235–243

    Article  Google Scholar 

  68. Yu L, Primak AN, Liu X, McCollough CH (2009) Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys 36:1019–1024

    Article  PubMed Central  PubMed  Google Scholar 

  69. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric CT: a rational approach. Radiology 228:352–360

    Article  PubMed  Google Scholar 

  70. Huda W, Lieberman KA, Chang J, Roskopf ML (2004) Patient size and X-ray technique factors in head computed tomography examinations. II. Image quality. Med Phys 31:595–601

    Article  PubMed  Google Scholar 

  71. Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522

    Article  PubMed  Google Scholar 

  72. Szucs-Farkas Z, Strautz T, Patak MA, Kurmann L, Vock P, Schindera ST (2009) Is body weight the most appropriate criterion to select patients eligible for low-dose pulmonary CT angiography? Analysis of objective and subjective image quality at 80 kVp in 100 patients. Eur Radiol 19:1914–1922

    Article  PubMed  Google Scholar 

  73. Thomas C, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H, Claussen CD et al (2010) Dual-energy computed tomography: is there a penalty in image quality and radiation dose compared with single-energy computed tomography? J Comput Assist Tomogr 34:309–315

    Article  PubMed  Google Scholar 

  74. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429

    Article  PubMed  Google Scholar 

  75. Johnson TR (2012) Dual-energy CT: general principles. AJR Am J Roentgenol 199:S3–S8

    Article  PubMed  Google Scholar 

  76. Henzler T, Fink C, Schoenberg SO, Schoepf UJ (2012) Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol 199:S16–S25

    Article  PubMed  Google Scholar 

  77. Bauer RW, Kramer S, Renker M, Schell B, Larson MC, Beeres M et al (2011) Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol 21:2139–2147

    Article  PubMed  Google Scholar 

  78. Fontanini G, Vignati S, Boldrini L, Chine S, Silvestri V, Lucchi M et al (1997) Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res 3:861–865

    CAS  Google Scholar 

  79. Hoey ET, Gopalan D, Ganesh V, Agrawal SK, Qureshi N, Tasker AD et al (2009) Dual-energy CT pulmonary angiography: a novel technique for assessing acute and chronic pulmonary thromboembolism. Clin Radiol 64:414–419

    Article  CAS  PubMed  Google Scholar 

  80. Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624

    Article  PubMed  Google Scholar 

  81. Chae EJ, Song JW, Krauss B, Song KS, Lee CW, Lee HJ et al (2010) Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging 25:301–310

    Article  PubMed  Google Scholar 

  82. Im AL, Lee YH, Bang DH, Yoon KH, Park SH (2013) Dual energy CT in patients with acute abdomen; is it possible for virtual non-enhanced images to replace true non-enhanced images? Emerg Radiol 20:475–483

    Article  PubMed  Google Scholar 

  83. Komissarova M, Chong S, Frey K, Sundaram B (2013) Imaging of acute pulmonary embolism. Emerg Radiol 20:89–101

    Article  PubMed  Google Scholar 

  84. Pansini V, Remy-Jardin M, Faivre JB, Schmidt B, Dejardin-Bothelo A, Perez T et al (2009) Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol 19:2834–2843

    Article  PubMed  Google Scholar 

  85. Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U, Nikolaou K et al (2010) Dual energy CT of the chest: how about the dose? Investig Radiol 45:347–353

    Google Scholar 

  86. Lee TH, Rouan GW, Weisberg MC, Brand DA, Acampora D, Stasiulewicz C et al (1987) Clinical characteristics and natural history of patients with acute myocardial infarction sent home from the emergency room. Am J Cardiol 60:219–224

    Article  CAS  PubMed  Google Scholar 

  87. Kerl JM, Bauer RW, Maurer TB, Aschenbach R, Korkusuz H, Lehnert T et al (2011) Dose levels at coronary CT angiography—a comparison of dual energy-, dual source- and 16-slice CT. Eur Radiol 21:530–537

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani H. Abujudeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aran, S., Shaqdan, K.W. & Abujudeh, H.H. Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations. Emerg Radiol 21, 391–405 (2014). https://doi.org/10.1007/s10140-014-1208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-014-1208-2

Keywords

Navigation