Skip to main content

Advertisement

Log in

Selection of Commercially Available Electric Vehicle using Fuzzy AHP-MABAC

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

There has been a paradigm shift towards electric vehicles (EVs) in the mobility sector to reduce green-house gas (GHG) emission and its impact on environment. The aim of this paper is to propose a holistic model for selection and ranking of a group of battery EVs using multi-attributive border approximation area comparison (MABAC) method considering various technical and operational attributes like fuel economy, base model pricing, quick accelerating time, battery range and top speed. The stability of the result obtained by this method is established through a sensitivity analysis. A sample of seven potential alternatives has been considered for study. It has been found that Hyundai Ioniq electric outperforms over other alternatives based on chosen criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. EC (2016), Communication: A European Strategy for Low-emission Mobility tCOM(2016)501 Final, http://www.ec.europa.eu/transport/themes/stragies/news/doc/2016-07-20-decarbonisation/com(2016)501_en.pdf. European Commission

  2. EC (2014), In: E. Commission (Ed.), Communication—A Policy Framework for Climate and Energy in the Period from 2020 to 2030 [COM (2014)15]

  3. EU (2011), White Paper (2011): Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System. European Commission

  4. IEA, Energy Technology Perspectives 2016: Towards Sustainable Energy Systems (OECD/IEA, Paris, 2016)

    Google Scholar 

  5. J. Brady, M. O’Mahony, Travel to work in Dublin The potential impacts of electric vehicles on climate change and urban air quality. Transp. Res. D Transp. Environ. 16(2), 188–193 (2011). https://doi.org/10.1016/j.trd.2010.09.006

    Article  Google Scholar 

  6. I. Moons, P. De Pelsmacker, Emotions as determinants of electric car usage intention. J. Mark. Manag. 28(3–4), 195–237 (2012)

    Article  Google Scholar 

  7. ACEA (2016), Alternative Fuel Vehicle registrations: +20.0% in 2015; +21.1% in Q4. Association of European Automobile Manufacturers, http://www.acea.be/press-releases/article/alternative-fuel-vehicle-registrations-20.0-in-2015-21.1-in-q4. Accessed 03/08/16

  8. P. Mock, Z. Yang, Driving Electrification. A Global Comparison of Fiscal Incentive Policy for Electric Vehicles. International Council on Clean Transportation (2014)

  9. R. Ozaki, K. Sevastyanova, Going hybrid: an analysis of consumer purchase motivations. Energy Policy 39(5), 2217–2227 (2011). https://doi.org/10.1016/j.enpol.2010.04.024

    Article  Google Scholar 

  10. J.S. Krupa, D.M. Rizzo, M.J. Eppstein, D. Brad Lanute, D.E. Gaalema, K. Lakkaraju, C.E. Warrender, Analysis of a consumer survey on plug-in hybrid EVs. Transp. Res. A Policy Pract. 64, 14–31 (2014). https://doi.org/10.1016/j.tra.2014.02.019)

    Article  Google Scholar 

  11. S. Skippon, M. Garwood, Responses to battery EVs: UK consumer attitudes and attributions of symbolic meaning following direct experience to reduce psychological distance. Transp. Res. D Transp. Environ. 16(7), 525–531 (2011). https://doi.org/10.1016/j.trd.2011.05.005

    Article  Google Scholar 

  12. S. Harryson, M. Ulmefors, A. Kazlova, Overview and analysis of electric vehicle incentives applied across eight selected country markets (2015), https://www.divaportal.org/smash/get/diva2:882227/FULLTEXT01.pdf. Accessed 31 Jan 2018

  13. A.C. Mersky, F. Sprei, C. Samaras, Z. Qian, Effectiveness of incentives on electric vehicle adoption in Norway. Transp. Res. Part D Transp. Environ. 1, 20 (2016). https://doi.org/10.1016/j.trd.2016.03.011

    Google Scholar 

  14. H. Ny, S. Borén, L. Nurhadi, J. Schulte, K.-H. Robèrt, G. Broman, Vägval 2030. Färdplan för snabbomställning till hållbara persontransporter. Blekinge Institute of Technology (2017), http://bth.diva-portal.org/smash/get/diva2:1089430/FULLTEXT01.pdf. Accessed 31 Jan 2018

  15. W. Sierzchula, S. Bakker, K. Maat, B. van Wee, The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy 68, 183–194 (2014)

    Article  Google Scholar 

  16. J.H.M. Langbroek, J.P. Franklin, Y.O. Susilo, The effect of policy incentives on electric vehicle adoption. Energy Policy (2016). https://doi.org/10.1016/j.enpol.2016.03.050

    Google Scholar 

  17. W. Sierzchula, Factors influencing fleet manager adoption of electric vehicles. Transp. Res. Part D Transp. Environ. 31, 126–134 (2014). https://doi.org/10.1016/j.trd.2014.05.022

    Article  Google Scholar 

  18. M. Dijk, R.J. Orsato, R. Kemp, The emergence of an electric mobility trajectory. Energy Policy 52, 135–145 (2013). [CrossRef]

    Article  Google Scholar 

  19. J. Axsen, J. TyreeHageman, A. Lentz, Lifestyle practices and pro-environmental technology. Ecol. Econ. 82, 64–74 (2012). https://doi.org/10.1016/j.ecolecon.2012.07.013

    Article  Google Scholar 

  20. Brook Lyndhurst, Uptake of Ultra Low Emission Vehicles in the UK—A Rapid Evidence Assessment for the Department for Transport. Office for Low Emission Vehicles (2015)

  21. A. Schwartz. Why Tesla’s free electric vehicle superchargers are a big deal (and why they aren’t). Sep 27 (2012), http://www.fastcoexist.com/1680627/why-teslasfree-electric-vehicle-superchargers-are-a-big-dealand-why-they-arent. Accessed 24/05/2017

  22. T.L. Saaty, The analytic hierarchy process, 1st edn. (McGraw-Hill, New York, 1980)

    MATH  Google Scholar 

  23. A. Charnes, W.W. Cooper, E.L. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Roy. Classementetchoix en presence de points de vue multiples (la method ELECTRE) R.I.R.O 8, 57–75 (1968)

  25. J.P. Brans, L’ingénièrie de la décision; Elaboration d’instrumentsd’aide à la décision. La méthode PROMETHEE, in L’aide à la décision: Nature, Instruments et Perspectives d’Avenir, ed. by R. Nadeau, M. Landry (Presses de l’Université Laval, Québec, 1982), pp. 183–213

    Google Scholar 

  26. D. Pamucar, G. Cirovic, The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 42, 3016–3028 (2015). https://doi.org/10.1016/j.eswa.2014.11.057

    Article  Google Scholar 

  27. M.C. Das, B. Sarkar, S. Ray, A framework to measure relative performance of Indian technical institutions using integrated fuzzy AHP and COPRAS methodology. Socio Econ. Plan. Sci. 46, 230–241 (2012)

    Article  Google Scholar 

  28. D.Y. Chang, Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kumar Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, T.K., Das, M.C. Selection of Commercially Available Electric Vehicle using Fuzzy AHP-MABAC. J. Inst. Eng. India Ser. C 100, 531–537 (2019). https://doi.org/10.1007/s40032-018-0481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-018-0481-3

Keywords

Navigation