Skip to main content
Log in

Prediction of Probability of Liquefaction Using Soft Computing Techniques

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Prediction of liquefaction potential of any soil deposit is itself a very challenging task. The problem becomes even more demanding when it becomes necessary to incorporate the variability of all related parameters. Because the parameters that impact liquefaction potential are inherently unknown, the problem is probabilistic rather than deterministic. In the literature, probabilistic analysis of liquefaction potential has attracted a lot of attention, and it's been shown to be a useful technique for evaluating uncertainty inherent in the problem. Machine Learning (ML) techniques have found their applications in all fields of science and engineering while dealing with problems of stochastic nature. These techniques are capable of finding out the desired outputs very effectively. In this paper, five different ML models namely, extreme gradient boosting (XGBoost), random forest (RF), gradient boosting machines (GBM), support vector regression (SVR), and group method of data handling (GMDH) have been used for evaluation of probability of liquefaction based on standard penetration test data. In this study, analysis has been carried out with six input variable such as, depth of penetration, corrected standard penetration blow number, total vertical stress, fine content, maximum horizontal acceleration, total effective stress, and earthquake magnitude. To examine the capabilities of the suggested models in predicting the probability of liquefaction, several statistical parameters have been examined. To compare the accuracy of the proposed models, Taylor graph, REC curve, and error matrix have been developed. While all of the proposed models could efficiently predict the probability of liquefaction. XGBoost model has been found to give the best prediction among all five models. In summary, XGBoost model attained (\({R}^{2} =0.978\) for training and \({R}^{2} =0.799\) for testing), GBM model attained (\({R}^{2} = .953\) for training and \({R}^{2} =0.780\) for testing), RF model attained (\({R}^{2} = .930\) for training and \({R}^{2} =0.769\) for testing), SVR model attained (\({R}^{2} = .702\). for training and \({R}^{2} =0.778\) for testing), GMDH model attained (\({R}^{2} = 0.650\) for training and \({R}^{2} =0.701\) for testing). The proposed models can also be utilized as a valid model for forecasting the probability of liquefaction efficiently for complicated real-world earthquake engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Najdanovic and R. Obradovic, ( Soil Mechanics in Engineering Practice). (1981).

  2. C. Guoxing, K. Mengyun, S. Khoshnevisan, C. Weiyun, L. Xiaojun, Bull. Eng. Geol. Environ. 78, 945 (2019)

    Article  Google Scholar 

  3. P. Samui, T.G. Sitharam, Nat. Hazards Earth Syst. Sci. 11, 1 (2011)

    Article  Google Scholar 

  4. C.S. El Mohtar, A. Bobet, V.P. Drnevich, C.T. Johnston, M.C. Santagata, Geotechnique 64, 108 (2014)

    Article  Google Scholar 

  5. T.L. Youd, I.M. Idriss, J. Geotech. Geoenvironmental Eng. 127, 297 (2001)

    Article  Google Scholar 

  6. A. Ter-Martirosyan and L. D. Anh, in IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing, 2020), p. 52025.

  7. C. H. Juang and T. Jiang, in Proc. Sess. Geo-Denver 2000 - Soil Dyn. Liq. 2000, GSP 107 (2000), pp. 148–162.

  8. P. Samui, D. Kim, T.G. Sitharam, J. Appl. Geophys. 73, 8 (2011)

    Article  Google Scholar 

  9. A. Mahmood, X. Wei Tang, J. Nan Qiu, W. Jing Gu, A. Feezan, J. Cent. South Univ. 27, 500 (2020)

    Article  Google Scholar 

  10. M. Ahmad, X. Tang, F. Ahmad, M. Hadzima-Nyarko, A. Nawaz, and A. Farooq, in Earthquakes—From Tectonics to Build. (IntechOpen, 2021).

  11. H.B. Seed, I.M. Idriss, ASCE J. Soil Mech. Found. Div. 97, 1249 (1971)

    Article  Google Scholar 

  12. H.B. Seed, I.M. Idriss, I. Arango, J. Geotech. Eng. 109, 458 (1983)

    Article  Google Scholar 

  13. I.M. Idriss, R.W. Boulanger, Soil Dyn. Earthq. Eng. 26, 115 (2006)

    Article  Google Scholar 

  14. C.H. Juang, J. Ching, Z. Luo, C.S. Ku, Eng. Geol. 133–134, 85 (2012)

    Article  Google Scholar 

  15. X. Xue, M. Xiao, Environ Earth Sci. 75, 1 (2016)

    Article  Google Scholar 

  16. L. Zhang, Soil Dyn. Earthq. Eng. 17, 219 (1998)

    Article  Google Scholar 

  17. A.T.C. Goh, Can. Geotech. J. 39, 219 (2002)

    Article  Google Scholar 

  18. K.O. Cetin, R.B. Seed, A. Der Kiureghian, K. Tokimatsu, L.F. Harder, R.E. Kayen, R.E.S. Moss, J. Geotech. Geoenviron. Eng. 130, 1314 (2004)

    Article  Google Scholar 

  19. G. Zhang, P.K. Robertson, R.W.I. Brachman, J. Geotech. Geoenviron. Eng. 130, 861 (2004)

    Article  Google Scholar 

  20. C. Hsein Juang, H. Yuan, D. H. Lee, and C. S. Ku, Soil Dyn. Earthq. Eng. 22, 241 (2002).

  21. M. Pal, Int. J. Numer. Anal. Methods Geomech. 30, 983 (2006)

    Article  Google Scholar 

  22. X. Xue, X. Yang, Bull. Eng. Geol. Environ. 75, 153 (2016)

    Article  Google Scholar 

  23. T. Pradeep, A. Bardhan, P. Samui, Innov. Infrastruct. Solut. 7, 37 (2022)

    Article  Google Scholar 

  24. D.J. Armaghani, H. Harandizadeh, E. Momeni, H. Maizir, J. Zhou, Artif. Intell. Rev. 55, 2313 (2022)

    Article  Google Scholar 

  25. M. Hasanipanah, H. Bakhshandeh Amnieh, Eng. Comput. 37, 1879 (2021)

    Article  Google Scholar 

  26. M. Hasanipanah, D. Meng, B. Keshtegar, N.T. Trung, D.K. Thai, Neural Comput. Appl. 33, 4205 (2021)

    Article  Google Scholar 

  27. M. Hasanipanah, H. Bakhshandeh Amnieh, Nat. Resour. Res. 29, 669 (2020)

    Article  Google Scholar 

  28. A.M. Hanna, D. Ural, G. Saygili, Eng. Comput. (Swansea, Wales) 24, 5 (2007)

    Article  Google Scholar 

  29. P. Samui, J. Karthikeyan, Int. J. Numer. Anal. Methods Geomech. 37, 1154 (2013)

    Article  Google Scholar 

  30. Y. Gang Zhang, J. Qiu, Y. Zhang, Y. Wei, Nat. Hazards 107, 539 (2021)

    Article  Google Scholar 

  31. C.Y. Lee, S.G. Chern, J. Mar. Sci. Technol. 21, 318 (2013)

    Google Scholar 

  32. N.D. Hoang, D.T. Bui, Bull. Eng. Geol. Environ. 77, 191 (2018)

    Article  Google Scholar 

  33. P. Samui, Comput. Geotech. 35, 419 (2008)

    Article  Google Scholar 

  34. A. Abbaszadeh Shahri, Geotech. Geol. Eng. 34, 807 (2016)

    Article  Google Scholar 

  35. C.H. Juang, C.J. Chen, T. Jiang, R.D. Andrus, Can. Geotech. J. 37, 1195 (2000)

    Article  Google Scholar 

  36. X. Xue, X. Yang, Nat. Hazards 67, 901 (2013)

    Article  Google Scholar 

  37. A.T.C. Goh, S.H. Goh, Comput. Geotech. 34, 410 (2007)

    Article  Google Scholar 

  38. V.R. Kohestani, M. Hassanlourad, A. Ardakani, Nat. Hazards 79, 1079 (2015)

    Article  Google Scholar 

  39. J. Zhou, X. Li, H.S. Mitri, Nat. Hazards 79, 291 (2015)

    Article  Google Scholar 

  40. J. Zhou, X. Li, H.S. Mitri, J. Comput. Civ. Eng. 30, 4016003 (2016)

    Article  Google Scholar 

  41. T. Chen and C. Guestrin, in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (2016), pp. 785–794.

  42. L.T. Le, H. Nguyen, J. Zhou, J. Dou, H. Moayedi, Appl. Sci. 9, 2714 (2019)

    Article  Google Scholar 

  43. Z. Ding, H. Nguyen, X.N. Bui, J. Zhou, H. Moayedi, Nat. Resour. Res. 29, 751 (2020)

    Article  Google Scholar 

  44. L. Breiman, Mach. Learn. 45, 5 (2001)

    Article  Google Scholar 

  45. J.R. Harris, E.C. Grunsky, Comput. Geosci. 80, 9 (2015)

    Article  Google Scholar 

  46. R. Genuer, J.M. Poggi, C. Tuleau-Malot, Pattern Recognit. Lett. 31, 2225 (2010)

    Article  Google Scholar 

  47. J.H. Friedman, Comput. Stat. Data Anal. 38, 367 (2002)

    Article  Google Scholar 

  48. S. Touzani, J. Granderson, S. Fernandes, Energy Build. 158, 1533 (2018)

    Article  Google Scholar 

  49. P. Nie, M. Roccotelli, M.P. Fanti, Z. Ming, Z. Li, Energy Rep. 7, 1246 (2021)

    Article  Google Scholar 

  50. S. R. Sain and V. N. Vapnik, The Nature of Statistical Learning Theory (Springer science & business media, 1996).

  51. A.J. Smola, B. Schölkopf, Stat. Comput. 14, 199 (2004)

    Article  MathSciNet  Google Scholar 

  52. A. G. Ivakhnenko, G. I. Krotov, and V. N. Visotsky, in Theor. Syst. Ecol. (Academic Press New York, 1979), pp. 325–352.

  53. M. Najafzadeh, G.A. Barani, M.R. Hessami Kermani, Ocean Eng. 59, 100 (2013)

    Article  Google Scholar 

  54. A.M. Hanna, D. Ural, G. Saygili, Soil Dyn. Earthq. Eng. 27, 521 (2007)

    Article  Google Scholar 

  55. R. W. Boulanger and I. M. Idriss, Cent. Geotech. Model. 1 (2014).

  56. R.R. Phule, D. Choudhury, Nat. Hazards 85, 139 (2017)

    Article  Google Scholar 

  57. K.K. Phoon, F.H. Kulhawy, Can. Geotech. J. 36, 612 (1999)

    Article  Google Scholar 

  58. M. Gutierrez, J.M. Duncan, C. Woods, E. Eddy, Virginia Polytech (State Univ, Inst, 2003)

    Google Scholar 

  59. M. Naghizaderokni and A. Janalizade, COMPDYN 2015 - 5th ECCOMAS Themat. Conf. Comput. Methods Struct. Dyn. Earthq. Eng. 125, 4214 (2015).

  60. M. E. Harr, Reliability-based design in civil engineering. Vol. 20. Department of Civil Engineering, School of Engineering, North Carolina State University (1984)

  61. C. H. Juang and T. Jiang, Proc. Sess. Geo-Denver 2000 - Soil Dyn. Liq. 2000, GSP 107 295, 148 (2000).

  62. Y. Xia, C. Liu, Y.Y. Li, N. Liu, Expert Syst. Appl. 78, 225 (2017)

    Article  Google Scholar 

  63. J. Zhou, Y. Qiu, S. Zhu, D.J. Armaghani, M. Khandelwal, E.T. Mohamad, Undergr. Sp. 6, 506 (2021)

    Article  Google Scholar 

  64. M. Belgiu, L. Drăgu, ISPRS J. Photogramm. Remote Sens. 114, 24 (2016)

    Article  Google Scholar 

  65. A. Natekin, A. Knoll, Front. Neurorobot. 7, 21 (2013)

    Article  Google Scholar 

  66. C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995)

  67. C.N. Ko, C.M. Lee, Energy 49, 413 (2013)

    Article  Google Scholar 

  68. A.G. Ivakhnenko, IEEE Trans. Syst. Man Cybern. 1, 364 (1971)

    Article  MathSciNet  Google Scholar 

  69. L. Mo, L. Xie, X. Jiang, G. Teng, L. Xu, J. Xiao, Appl. Soft Comput. J. 62, 478 (2018)

    Article  Google Scholar 

  70. T. Chai, R.R. Draxler, Geosci. Model Dev. 7, 1247 (2014)

    Article  Google Scholar 

  71. T. Pradeep, A. GuhaRay, A. Bardhan, P. Samui, S. Kumar, and D. J. Armaghani, Arab. J. Sci. Eng. (2022).

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divesh Ranjan Kumar.

Ethics declarations

Conflict of interest

The author has no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D.R., Samui, P. & Burman, A. Prediction of Probability of Liquefaction Using Soft Computing Techniques. J. Inst. Eng. India Ser. A 103, 1195–1208 (2022). https://doi.org/10.1007/s40030-022-00683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-022-00683-9

Keywords

Navigation