Skip to main content

Advertisement

Log in

Computational Intelligence Model for Estimating Intensity of Blast-Induced Ground Vibration in a Mine Based on Imperialist Competitive and Extreme Gradient Boosting Algorithms

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this paper, we developed a novel hybrid model ICA–XGBoost for estimating blast-produced ground vibration in a mine based on extreme gradient boosting (XGBoost) and imperialist competitive algorithm (ICA). For comparison, we used another hybrid model combining particle swarm optimization and XGBoost [i.e., particle swarm optimization (PSO)–XGBoost] as well as other models, namely classical XGBoost, artificial neural network (ANN), gradient boosting machine (GBM), and support vector regression (SVR). We compared these techniques using 136 blasting events data gathered at an open-pit coal mine in Vietnam. The models’ performance evaluation criteria were the determination coefficient (R2), root-mean-square error, mean absolute error, ranking, and color intensity. Based on the results, our ICA–XGBoost model is the most robust in predicting blast-produced ground vibration. The PSO–XGBoost model provided a slightly poorer performance. The classical XGBoost model showed a lower performance than the hybrid models (i.e., ICA–XGBoost and PSO–XGBoost). The SVR and ANN models gave average performances, whereas the GBM model yielded the worst performance. The results also reveal that the maximum explosive charge capacity, the elevation between blast sites and monitoring points, and the monitoring distance are the most critical variables that should be used in predicting the intensity of blast-induced ground vibration in a mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Aldas, G., & Ecevitoglu, B. (2008). Waveform analysis in mitigation of blast-induced vibrations. Journal of Applied Geophysics,66(1–2), 25–30.

    Article  Google Scholar 

  • Amiri, M., Amnieh, H. B., Hasanipanah, M., & Khanli, L. M. (2016). A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure. Engineering with Computers,32(4), 631–644.

    Article  Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences,7(12), 5383–5396.

    Article  Google Scholar 

  • Armaghani, D. J., Hasanipanah, M., Amnieh, H. B., & Mohamad, E. T. (2018). Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing and Applications,29(9), 457–465.

    Article  Google Scholar 

  • Armaghani, D. J., Koopialipoor, M., Marto, A., & Yagiz, S. (2019). Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering,11(4), 779–789.

    Article  Google Scholar 

  • Armaghani, D. J., Momeni, E., Abad, S. V. A. N. K., & Khandelwal, M. (2015). Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environmental Earth Sciences,74(4), 2845–2860.

    Article  Google Scholar 

  • Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE.

  • Behzadafshar, K., Mohebbi, F., Soltani Tehrani, M., Hasanipanah, M., & Tabrizi, O. (2018). Predicting the ground vibration induced by mine blasting using imperialist competitive algorithm. Engineering Computations,35(4), 1774–1787.

    Article  Google Scholar 

  • Bui, X. N., Muazu, M. A., & Nguyen, H. (2019a). Optimizing Levenberg–Marquardt backpropagation technique in predicting factor of safety of slopes after two-dimensional OptumG2 analysis. Engineering with Computers. https://doi.org/10.1007/s00366-019-00741-0.

    Article  Google Scholar 

  • Bui, X. N., Nguyen, H., Le, H. A., Bui, H. B., & Do, N. H. (2019b). Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques. Natural Resources Research. https://doi.org/10.1007/s11053-019-09461-0.

    Article  Google Scholar 

  • Chen, T., & He, T. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2.

  • Dick, G. J., Eberhardt, E., Cabrejo-Liévano, A. G., Stead, D., & Rose, N. D. (2014). Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Canadian Geotechnical Journal,52(4), 515–529.

    Article  Google Scholar 

  • Dong, L.-J., Li, X.-B., Zhao, G.-Y., & Gong, F.-Q. (2009). Fisher discriminant analysis model and its application to predicting destructive effect of masonry structure under blasting vibration of open-pit mine. Chinese Journal of Rock Mechanics and Engineering,28(4), 750–756.

    Google Scholar 

  • Du, K., Su, R., Tao, M., Yang, C., Momeni, A., & Wang, S. (2019). Specimen shape and cross-section effects on the mechanical properties of rocks under uniaxial compressive stress. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-019-01518-x.

    Article  Google Scholar 

  • Du, K., Tao, M., Li, X., & Zhou, J. (2016). Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance. Rock Mechanics and Rock Engineering, 49(9), 3437–3453. https://doi.org/10.1007/s00603-016-0990-4.

    Article  Google Scholar 

  • Ekanayake, S. D., Liyanapathirana, D., & Leo, C. J. (2014). Attenuation of ground vibrations using in-filled wave barriers. Soil Dynamics and Earthquake Engineering,67, 290–300.

    Article  Google Scholar 

  • Ferentinou, M., & Fakir, M. (2018). Integrating rock engineering systems device and artificial neural networks to predict stability conditions in an open pit. Engineering Geology,246, 293–309.

    Article  Google Scholar 

  • Folchi, R. (2003). Environmental impact statement for mining with explosives: a quantitative method. In Proceedings of the annual conference on explosives and blasting technique. ISEE.

  • Fouladgar, N., Hasanipanah, M., & Amnieh, H. B. (2017). Application of cuckoo search algorithm to estimate peak particle velocity in mine blasting. Engineering with Computers,33(2), 181–189.

    Article  Google Scholar 

  • Franco-Sepúlveda, G., Del Rio-Cuervo, J. C., & Pachón-Hernández, M. A. (2019). State of the art about metaheuristics and artificial neural networks applied to open pit mining. Resources Policy,60, 125–133.

    Article  Google Scholar 

  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis,38(4), 367–378.

    Article  Google Scholar 

  • Gao, W., Aslam, A., & Li, F. (2019a). Effect of equivalence ratio on gas distribution and performance parameters in air-gasification of asphaltene: A model based on artificial neural network (ANN). Petroleum Science and Technology,37(2), 202–207.

    Article  Google Scholar 

  • Gao, W., Guirao, J. L., Basavanagoud, B., & Wu, J. (2018a). Partial multi-dividing ontology learning algorithm. Information Sciences,467, 35–58.

    Article  Google Scholar 

  • Gao, W., Karbasi, M., Hasanipanah, M., Zhang, X., & Guo, J. (2018b). Developing GPR model for forecasting the rock fragmentation in surface mines. Engineering with Computers,34(2), 339–345.

    Article  Google Scholar 

  • Gao, W., Raftari, M., Rashid, A. S. A., Mu’azu, M. A., & Jusoh, W. A. W. (2019b). A predictive model based on an optimized ANN combined with ICA for predicting the stability of slopes. Engineering with Computers. https://doi.org/10.1007/s00366-019-00702-7.

    Article  Google Scholar 

  • Gao, W., & Wang, W. (2018). Analysis of k-partite ranking algorithm in area under the receiver operating characteristic curve criterion. International Journal of Computer Mathematics,95(8), 1527–1547.

    Article  Google Scholar 

  • Gao, W., Wu, H., Siddiqui, M. K., & Baig, A. Q. (2018c). Study of biological networks using graph theory. Saudi Journal of Biological Sciences,25(6), 1212–1219.

    Article  Google Scholar 

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling,160(3), 249–264.

    Article  Google Scholar 

  • Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H., & Tonnizam Mohamad, E. (2019). Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques. Engineering with Computers,35(3), 945–954.

    Article  Google Scholar 

  • Guo, H., Nguyen, H., Bui, X.-N., & Armaghani, D. J. (2019a). A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Engineering with Computers. https://doi.org/10.1007/s00366-019-00833-x.

    Article  Google Scholar 

  • Guo, H., Zhou, J., Koopialipoor, M., Jahed Armaghani, D., & Tahir, M. M. (2019b). Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Engineering with Computers. https://doi.org/10.1007/s00366-019-00816-y.

    Article  Google Scholar 

  • Hajihassani, M., Armaghani, D. J., Marto, A., & Mohamad, E. T. (2015). Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment,74(3), 873–886.

    Article  Google Scholar 

  • Hasanipanah, F., Amnieh, A., & Monjezi, (2017a). Forecasting blast-induced ground vibration developing a CART model. Engineering with Computers,33(2), 307–316.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Majid, M. Z. A., & Tahir, M. M. (2017b). Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Computing and Applications,28(1), 1043–1050.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Monjezi, M., & Shams, S. (2016). Risk assessment and prediction of rock fragmentation produced by blasting operation: A rock engineering system. Environmental Earth Sciences,75(9), 808.

    Article  Google Scholar 

  • Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement,75, 289–297.

    Article  Google Scholar 

  • Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A., & Qaleh, A. Z. A. (2017c). Prediction of blast-produced ground vibration using particle swarm optimization. Engineering with Computers,33(2), 173–179.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Amnieh, H. B., & Armaghani, D. J. (2017d). Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Engineering with Computers,33(1), 23–31.

    Article  Google Scholar 

  • Kahriman, A. (2004). Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry. Soil Dynamics and Earthquake Engineering,24(11), 887–892.

    Article  Google Scholar 

  • Kahriman, A., Ozer, U., Aksoy, M., Karadogan, A., & Tuncer, G. (2006). Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. Environmental Geology,50(7), 1015–1023.

    Article  Google Scholar 

  • Khandelwal, M., & Saadat, M. (2015). A dimensional analysis approach to study blast-induced ground vibration. Rock Mechanics and Rock Engineering,48(2), 727–735.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. (2005). Prediction of blast induced air overpressure in opencast mine. Noise and Vibration Worldwide,36(2), 7–16.

    Article  Google Scholar 

  • Koopialipoor, M., Armaghani, D. J., Hedayat, A., Marto, A., & Gordan, B. (2019a). Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing,23(14), 5913–5929.

    Article  Google Scholar 

  • Koopialipoor, M., Fahimifar, A., Ghaleini, E. N., Momenzadeh, M., & Armaghani, D. J. (2019b). Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Engineering with Computers. https://doi.org/10.1007/s00366-019-00701-8.

    Article  Google Scholar 

  • Koopialipoor, M., Ghaleini, E. N., Haghighi, M., Kanagarajan, S., Maarefvand, P., & Mohamad, E. T. (2018). Overbreak prediction and optimization in tunnel using neural network and bee colony techniques. Engineering with Computers. https://doi.org/10.1007/s00366-018-0658-7.

    Article  Google Scholar 

  • Koopialipoor, M., Ghaleini, E. N., Tootoonchi, H., Jahed Armaghani, D., Haghighi, M., & Hedayat, A. (2019c). Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN. Environmental Earth Sciences,78(5), 165.

    Article  Google Scholar 

  • Koopialipoor, M., Murlidhar, B. R., Hedayat, A., Armaghani, D. J., Gordan, B., & Mohamad, E. T. (2019d). The use of new intelligent techniques in designing retaining walls. Engineering with Computers. https://doi.org/10.1007/s00366-018-00700-1.

    Article  Google Scholar 

  • Koopialipoor, M., Nikouei, S. S., Marto, A., Fahimifar, A., Jahed Armaghani, D., & Mohamad, E. T. (2019e). Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bulletin of Engineering Geology and the Environment,78(5), 3799–3813.

    Article  Google Scholar 

  • Koopialipoor, M., Noorbakhsh, A., Noroozi Ghaleini, E., Jahed Armaghani, D., & Yagiz, S. (2019f). A new approach for estimation of rock brittleness based on non-destructive tests. Nondestructive Testing and Evaluation. https://doi.org/10.1080/10589759.2019.1623214.

    Article  Google Scholar 

  • Le, L. T., Nguyen, H., Zhou, J., Dou, J., & Moayedi, H. (2019). Estimating the heating load of buildings for smart city planning using a Novel Artificial Intelligence Technique PSO-XGBoost. Applied Sciences, 9(13), 2714.

    Article  Google Scholar 

  • Lian, L., Congxin, C., Yibao, X., & Dongjun, X. (1997). Displacement monitoring and landslide forecast on the rock slope of open-pit mine. Rock and Soil Mechanics,4, 012.

    Google Scholar 

  • Lv, C., Liu, Y., Hu, X., Guo, H., Cao, D., & Wang, F.-Y. (2018). Simultaneous observation of hybrid states for cyber-physical systems: A case study of electric vehicle powertrain. IEEE Transactions on Cybernetics,48(8), 2357–2367.

    Article  Google Scholar 

  • Meng, H., Bianchi-Berthouze, N., Deng, Y., Cheng, J., & Cosmas, J. P. (2016). Time-delay neural network for continuous emotional dimension prediction from facial expression sequences. IEEE Transactions on Cybernetics,46(4), 916–929.

    Article  Google Scholar 

  • Moayedi, H., & Jahed Armaghani, D. (2018). Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Engineering with Computers,34(2), 347–356.

    Article  Google Scholar 

  • Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A. S. A., & Pradhan, B. (2019a). Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Engineering with Computers,35(3), 967–984.

    Article  Google Scholar 

  • Moayedi, H., Nguyen, H., & Rashid, A. S. A. (2019b). Novel metaheuristic classification approach in developing mathematical model-based solutions predicting failure in shallow footing. Engineering with Computers. https://doi.org/10.1007/s00366-019-00819-9.

    Article  Google Scholar 

  • Moayedi, H., Osouli, A., Nguyen, H., & Rashid, A. S. A. (2019c). A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Engineering with Computers. https://doi.org/10.1007/s00366-019-00828-8.

    Article  Google Scholar 

  • Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W. A. W., & Rashid, A. S. A. (2019d). Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Engineering with Computers. https://doi.org/10.1007/s00366-018-00694-w.

    Article  Google Scholar 

  • Mohamed, M. T. (2011). Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. International Journal of Rock Mechanics and Mining Sciences,48(5), 845.

    Article  Google Scholar 

  • Mokfi, T., Shahnazar, A., Bakhshayeshi, I., Derakhsh, A. M., & Tabrizi, O. (2018). Proposing of a new soft computing-based model to predict peak particle velocity induced by blasting. Engineering with Computers,34(4), 881–888. https://doi.org/10.1007/s00366-018-0578-6.

    Article  Google Scholar 

  • Monjezi, M., Ghafurikalajahi, M., & Bahrami, A. (2011). Prediction of blast-induced ground vibration using artificial neural networks. Tunnelling and Underground Space Technology,26(1), 46–50.

    Article  Google Scholar 

  • Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications,22(7–8), 1637–1643.

    Article  Google Scholar 

  • Nguyen, H. (2019). Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: A case study in an open-pit coal mine of Vietnam. SN Applied Sciences,1(4), 283. https://doi.org/10.1007/s42452-019-0295-9.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X.-N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research. https://doi.org/10.1007/s11053-018-9424-1.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Bui, H.-B., & Cuong, D. T. (2019a). Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophysica,67(2), 477–490.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Bui, H.-B., & Mai, N.-L. (2018a). A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine. Vietnam. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3717-5.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., Le, T.-Q., Do, N.-H., & Hoa, L. T. T. (2018b). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam. SN Applied Sciences,1(1), 125. https://doi.org/10.1007/s42452-018-0136-2.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., & Mai, N.-L. (2019b). A new soft computing model for estimating and controlling blast-produced ground vibration based on hierarchical K-means clustering and cubist algorithms. Applied Soft Computing,77, 376–386.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., & Moayedi, H. (2019c). Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam. Environmental Earth Sciences,78(15), 479. https://doi.org/10.1007/s12665-019-8491-x.

    Article  Google Scholar 

  • Nguyen, H., Drebenstedt, C., Bui, X.-N., & Bui, D. T. (2019d). Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09470-z.

    Article  Google Scholar 

  • Nguyen, H., Moayedi, H., Foong, L. K., Al Najjar, H. A. H., Jusoh, W. A. W., Rashid, A. S. A., et al. (2019e). Optimizing ANN models with PSO for predicting short building seismic response. Engineering with Computers. https://doi.org/10.1007/s00366-019-00733-0.

    Article  Google Scholar 

  • Nguyen, H., Moayedi, H., Jusoh, W. A. W., & Sharifi, A. (2019f). Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system. Engineering with Computers. https://doi.org/10.1007/s00366-019-00735-y.

    Article  Google Scholar 

  • Nui Beo Company (2010). The geological report of Nui Beo open-pit coal mine. Vietnam.

  • Qiu, X., Shi, X., Gou, Y., Zhou, J., Chen, H., & Huo, X. (2018). Short-delay blasting with single free surface: Results of experimental tests. Tunnelling and Underground Space Technology,74, 119–130.

    Article  Google Scholar 

  • Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial intelligence. World Scientific.

  • Segui, J., & Higgins, M. (2002). Blast design using measurement while drilling parameters. Fragblast,6(3–4), 287–299.

    Article  Google Scholar 

  • Shabani, H., Vahidi, B., & Ebrahimpour, M. (2013). A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems. ISA Transactions,52(1), 88–95.

    Article  Google Scholar 

  • Shahri, A. A., & Asheghi, R. (2018). Optimized developed artificial neural network-based models to predict the blast-induced ground vibration. Innovative Infrastructure Solutions,3(1), 34.

    Article  Google Scholar 

  • Shang, Y., Nguyen, H., Bui, X.-N., Tran, Q.-H., & Moayedi, H. (2019). A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09503-7.

    Article  Google Scholar 

  • Sharma, L., Umrao, R., Singh, R., Ahmad, M., & Singh, T. (2017a). Geotechnical characterization of road cut hill slope forming unconsolidated geo-materials: A case study. Geotechnical and Geological Engineering,35(1), 503–515.

    Article  Google Scholar 

  • Sharma, L., Umrao, R. K., Singh, R., Ahmad, M., & Singh, T. (2017b). Stability investigation of hill cut soil slopes along National highway 222 at Malshej Ghat, Maharashtra. Journal of the Geological Society of India,89(2), 165–174.

    Article  Google Scholar 

  • Sheykhi, H., Bagherpour, R., Ghasemi, E., & Kalhori, H. (2018). Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering. Engineering with Computers,34(2), 357–365.

    Article  Google Scholar 

  • Singh, T., Singh, R., Singh, B., Sharma, L., Singh, R., & Ansari, M. (2016). Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India. Natural Hazards,81(3), 2019–2030.

    Article  Google Scholar 

  • Trivedi, R., Singh, T., & Gupta, N. (2015). Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotechnical and Geological Engineering,33(4), 875–891.

    Article  Google Scholar 

  • Wen, Y., Si, J., Brandt, A., Gao, X., & Huang, H. (2019). Online reinforcement learning control for the personalization of a robotic knee prosthesis. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2019.2890974.

    Article  Google Scholar 

  • Yang, H., Hasanipanah, M., Tahir, M., & Bui, D. T. (2019). Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO. Natural Resources Research. https://doi.org/10.1007/s11053-019-09515-3.

    Article  Google Scholar 

  • Yang, J., Tao, Z., Li, B., Gui, Y., & Li, H. (2012). Stability assessment and feature analysis of slope in Nanfen Open Pit Iron Mine. International Journal of Mining Science and Technology,22(3), 329–333.

    Article  Google Scholar 

  • Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics,13(1), 134.

    Article  Google Scholar 

  • Zgür, A. Ö., & Taşkıran, T. (2015). Investigation of blast-induced ground vibration effects on rural buildings. Structural Engineering and Mechanics,54(3), 545–560.

    Article  Google Scholar 

  • Zhang, X., Nguyen, H., Bui, X.-N., Tran, Q.-H., Nguyen, D.-A., Bui, D. T., et al. (2019). Novel soft computing model for predicting blast-induced ground vibration in Open-Pit Mines based on particle swarm optimization and XGBoost. Natural Resources Research. https://doi.org/10.1007/s11053-019-09492-7.

    Article  Google Scholar 

  • Zhou, J., Aghili, N., Ghaleini, E. N., Bui, D. T., Tahir, M. M., & Koopialipoor, M. (2019a). A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Engineering with Computers. https://doi.org/10.1007/s00366-019-00726-z.

    Article  Google Scholar 

  • Zhou, J., Koopialipoor, M., Murlidhar, B. R., Fatemi, S. A., Tahir, M. M., Jahed Armaghani, D., et al. (2019b). Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Natural Resources Research. https://doi.org/10.1007/s11053-019-09519-z.

    Article  Google Scholar 

  • Zhou, J., Li, X., & Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Science,50(4), 629–644.

    Article  Google Scholar 

  • Zhou, J., Li, E., Wang, M., Chen, X., Shi, X., & Jiang, L. (2019c). Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories. Journal of Performance of Constructed Facilities,33(3), 04019024.

    Article  Google Scholar 

  • Zhou, J., Shi, X.-Z., Huang, R.-D., Qiu, X.-Y., & Chong, C. (2016). Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines. Transactions of Nonferrous Metals Society of China,26(7), 1938–1945.

    Article  Google Scholar 

  • Zou, W., Xia, Y., & Li, H. (2018). Fault diagnosis of tennessee-eastman process using orthogonal incremental extreme learning machine based on driving amount. IEEE Transactions on Cybernetics,99, 1–8.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51874232; 41807259), and Hanoi University of Mining and Geology (HUMG), Hanoi, Vietnam; Duy Tan University, Da Nang, Vietnam; and the Center for Mining, Electro-Mechanical research of HUMG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hoang Nguyen or Hossein Moayedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Nguyen, H., Bui, XN. et al. Computational Intelligence Model for Estimating Intensity of Blast-Induced Ground Vibration in a Mine Based on Imperialist Competitive and Extreme Gradient Boosting Algorithms. Nat Resour Res 29, 751–769 (2020). https://doi.org/10.1007/s11053-019-09548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09548-8

Keywords

Navigation