Skip to main content

Advertisement

Log in

Injectable Biomaterials in Plastic and Reconstructive Surgery: A Review of the Current Status

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Injectable biomaterials have attracted increasing attention for volume restoration and tissue regeneration. The main aim of this review is to discuss the current status of the injectable biomaterials for correction of tissue defects in plastic and reconstructive surgery.

Methods:

Requirements of injectable biomaterials, mechanism of in situ gelation, characteristics, and the combinational usage of adipose-derived stem cells (ADSCs) and growth factors were reviewed.

Results:

The ideal injectable biomaterials should be biocompatible, non-toxic, easy to use, and cost-effective. Additionally, it should possess adequate mechanical properties and stability. In situ gelation method includes physical, chemical, enzymatic and photo-initiated methods. Natural and synthetic biomaterials carry their pros and cons due to their inherent properties. The combined use of ADSCs and growth factors provides enhanced potential for adipose tissue regeneration.

Conclusions:

The usage of injectable biomaterials has been increasing for the tissue restoration and regeneration. The future of incorporating ADSCs and growth factors into the injectable biomaterials is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Ref. [9]

Fig. 2

Reproduced with permission [113] of John Wiley and Sons, Inc.

Fig. 3

Reproduced with permission [117] of John Wiley and Sons, Inc.

Fig. 4

Reproduced with permission [118] of John Wiley and Sons, Inc

Fig. 5

Reproduced with permission [121] Copyright © 2018, Elsevier

Similar content being viewed by others

References

  1. Wang P, Mariman E, Keijer J, Bouwman F, Noben JP, Robben J, et al. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell Mol Life Sci. 2004;61:2405–17.

    CAS  PubMed  Google Scholar 

  2. Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv. 2014;32:449–61.

    Article  CAS  PubMed  Google Scholar 

  3. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater. 2009;21:3368–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spector M, Lim TC. Injectable biomaterials: a perspective on the next wave of injectable therapeutics. Biomed Mater. 2016;11:014110.

    Article  PubMed  CAS  Google Scholar 

  5. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  6. Prichard HL, Reichert W, Klitzman B. IFATS collection: Adipose-derived stromal cells improve the foreign body response. Stem Cells. 2008;26:2691–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alijotas-Reig J, Fernández-Figueras MT, Puig L. Late-onset inflammatory adverse reactions related to soft tissue filler injections. Clin Rev Allergy Immunol. 2013;45:97–108.

    Article  CAS  PubMed  Google Scholar 

  8. Daines SM, Williams EF. Complications associated with injectable soft-tissue fillers a 5-year retrospective review. JAMA Facial Plast Surg. 2013;15:226–31.

    Article  PubMed  Google Scholar 

  9. Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193–221.

    Article  CAS  PubMed  Google Scholar 

  10. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54:37–51.

    Article  CAS  PubMed  Google Scholar 

  11. Singelyn JM, Christman KL. Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res. 2010;3:478–86.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huynh CT, Nguyen MK, Lee DS. Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules. 2011;44:6629–36.

    Article  CAS  Google Scholar 

  13. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004;29:1173–222.

    Article  CAS  Google Scholar 

  14. Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, et al. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater. 2017;63:37–49.

    Article  PubMed  CAS  Google Scholar 

  15. Mekhail M, Tabrizian M. Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater. 2014;3:1529–45.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Article  Google Scholar 

  17. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lee KY, Bouhadir KH, Mooney DJ. Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials. 2004;25:2461–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials. 2005;26:5617–23.

    Article  CAS  PubMed  Google Scholar 

  20. Pati F, Adhikari B, Dhara S. Development of chitosan-tripolyphosphate fibers through pH dependent ionotropic gelation. Carbohyd Res. 2011;346:2582–8.

    Article  CAS  Google Scholar 

  21. Shimojo AAM, Galdames SEM, Perez AGM, Ito TH, Luzo ACM, Santana MHA. In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Eng Regen Med. 2016;13:21–30.

    Article  CAS  Google Scholar 

  22. Mekhail M, Daoud J, Almazan G, Tabrizian M. Rapid, guanosine 5’-diphosphate-induced, gelation of chitosan sponges as novel injectable scaffolds for soft tissue engineering and drug delivery applications. Adv Healthc Mater. 2013;2:1126–30.

    Article  CAS  PubMed  Google Scholar 

  23. Dawlee S, Sugandhi A, Balakrishnan B, Labarre D, Jayakrishnan A. Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromolecules. 2005;6:2040–8.

    Article  CAS  PubMed  Google Scholar 

  24. Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y, et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials. 2004;25:699–706.

    Article  CAS  PubMed  Google Scholar 

  25. Ito T, Fraser IP, Yeo Y, Highley CB, Bellas E, Kohane DS. Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials. 2007;28:1778–86.

    Article  CAS  PubMed  Google Scholar 

  26. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MS, Choi YJ, Noh I, Tae G. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res A. 2007;83:674–82.

    Article  PubMed  CAS  Google Scholar 

  28. Vanderhooft JL, Mann BK, Prestwich GD. Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules. 2007;8:2883–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kim M, Kim SE, Kang SS, Kim YH, Tae G. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. Biomaterials. 2011;32:7883–96.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Skardal A, Prestwich GD. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials. 2008;29:4521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bae JW, Choi JH, Lee Y, Park KD. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J Tissue Eng Regen Med. 2015;9:1225–32.

    Article  CAS  PubMed  Google Scholar 

  32. Hwang JH, Kim IG, Piao S, Jung AR, Lee JY, Park KD, et al. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials. 2013;34:6037–45.

    Article  CAS  PubMed  Google Scholar 

  33. Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A. 2010;16:2429–40.

    Article  CAS  PubMed  Google Scholar 

  34. Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release. 2011;152:186–95.

    Article  CAS  PubMed  Google Scholar 

  35. Lih E, Lee JS, Park KM, Park KD. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater. 2012;8:3261–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ogushi Y, Sakai S, Kawakami K. Adipose tissue engineering using adipose-derived stem cells enclosed within an injectable carboxymethylcellulose-based hydrogel. J Tissue Eng Regen Med. 2013;7:884–92.

    Article  CAS  PubMed  Google Scholar 

  37. Xu K, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J Control Release. 2013;3:203–10.

    Article  CAS  Google Scholar 

  38. Gentleman E, Nauman EA, Livesay GA, Dee KC. Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng. 2006;12:1639–49.

    Article  CAS  PubMed  Google Scholar 

  39. Jin GZ, Kim HW. Effects of type I collagen concentration in hydrogel on the growth and phenotypic expression of rat chondrocytes. Tissue Eng Regen Med. 2017;14:383–91.

    Article  CAS  Google Scholar 

  40. Luca A, Butnaru M, Maier SS, Knieling L, Bredetean O, Verestiuc L, et al. Atelocollagen-based hydrogels crosslinked with oxidised polysaccharides as cell encapsulation matrix for engineered bioactive stromal tissue. Tissue Eng Regen Med. 2017;14:539–56.

    Article  CAS  Google Scholar 

  41. Silvipriya KS, Kumar KK, Bhat AR, Kumar BD, John A, lakshmanan P. Collagen: animal sources and biomedical application. J Appl Pharm Sci. 2015;5:123–7.

    Article  CAS  Google Scholar 

  42. Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron. 2001;32:251–60.

    Article  CAS  PubMed  Google Scholar 

  43. Bauman L, Kaufman J, Saghari S. Collagen fillers. Dermatol Ther. 2006;19:134–40.

    Article  Google Scholar 

  44. Zeide DA. Adverse reactions to collagen implants. Clin Dermatol. 1986;4:176–82.

    Article  CAS  PubMed  Google Scholar 

  45. Lin ZY, Shah V, Dhinakar A, Yildirimer L, Cui WG, Zhao X. Intradermal fillers for minimally invasive treatment of facial aging. Plast Aesthet Res. 2016;3:72–82.

    Article  Google Scholar 

  46. Lee JH, Choi YS, Kim SM, Kim YJ, Rhie JW, Jun YJ. Efficacy and safety of porcine collagen filler for nasolabial fold correction in Asians: a prospective multicenter, 12 months follow-up study. J Korean Med Sci. 2014;29 Suppl 3:S217–21.

    Article  PubMed  CAS  Google Scholar 

  47. Kim BS, Choi JS, Kim JD, Yoon HI, Choi YC, Cho YW. Human collagen isolated from adipose tissue. Biotechnol Prog. 2012;28:973–80.

    Article  CAS  PubMed  Google Scholar 

  48. Báez J, Olsen D, Polarek JW. Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol. 2005;69:245–52.

    Article  PubMed  CAS  Google Scholar 

  49. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym. 2013;92:1262–79.

    Article  CAS  Google Scholar 

  50. Allemann IB, Baumann L. Hyaluronic acid gel (Juvéderm™) preparations in the treatment of facial wrinkles and folds. Clin Interv Aging. 2008;3:629–34.

    Article  CAS  PubMed Central  Google Scholar 

  51. Tan H, Li H, Rubin JP, Marra KG. Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regen Med. 2011;5:790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee F, Chung JE, Xu K, Kurisawa M. Injectable degradation-resistant hyaluronic acid hydrogels cross-linked via the oxidative coupling of green tea catechin. ACS Macro Lett. 2015;4:957–60.

    Article  CAS  Google Scholar 

  53. Korurer E, Kenar H, Doger E, Karaoz E. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications. J Biomed Mater Res A. 2014;102:2220–9.

    Article  PubMed  CAS  Google Scholar 

  54. Tan HP, Rubin JP, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis. 2010;6:173–80.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Domingues RM, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, et al. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem. 2015;26:1571–81.

    Article  CAS  PubMed  Google Scholar 

  56. Fan M, Ma Y, Zhang Z, Mao J, Tan H, Hu X. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015;56:311–7.

    Article  CAS  PubMed  Google Scholar 

  57. Pollack SV. Some new injectable dermal filler materials: Hylaform, Restylane, and Artecoll. J Cutan Med Surg. 1999;3 Suppl 4:S27–35.

    CAS  PubMed  Google Scholar 

  58. Monheit GD, Coleman KM. Hyaluronic acid fillers. Dermatol Ther. 2006;19:141–50.

    Article  PubMed  Google Scholar 

  59. Maas CS, Bapna S. Pins and needles: minimally invasive office techniques for facial rejuvenation. Facial Plast Surg. 2009;25:260–9.

    Article  CAS  PubMed  Google Scholar 

  60. Hevia O, Cohen BH, Howell DJ. Safety and efficacy of a cohesive polydensified matrix hyaluronic acid for the correction of infraorbital hollow: an observational study with results at 40 weeks. J Drugs Dermatol. 2014;13:1030–6.

    CAS  PubMed  Google Scholar 

  61. Jatana KR, Smith SP Jr. The scientific basis for lipotransfer: is it the ideal filler? Facial Plast Surg Clin North Am. 2008;16:443–8.

    Article  PubMed  Google Scholar 

  62. Coleman SR. Structural fat grafts: the ideal filler? Clin Plast Surg. 2001;28:111–9.

    CAS  PubMed  Google Scholar 

  63. Raposio E, Bertozzi N. Autologous fat grafting and processing after breast reconstruction. Surg Chron. 2017;22:66–72.

    Google Scholar 

  64. Mori A, Lo Russo G, Agostini T, Pattarino J, Vichi F, Dini M. Treatment of human immunodeficiency virus-associated facial lipoatrophy with lipofilling and submalar silicone implants. J Plast Reconstr Aesthet Surg. 2006;59:1209–16.

    Article  CAS  PubMed  Google Scholar 

  65. Rohrich RJ, Arbique GM, Wong C, Brown S, Pessa JE. The anatomy of suborbicularis fat: implications for periorbital rejuvenation. Plast Reconstr Surg. 2009;124:946–51.

    Article  CAS  PubMed  Google Scholar 

  66. Hoang D, Orgel MI, Kulber DA. Hand rejuvenation: a comprehensive review of fat grafting. J Hand Surg Am. 2016;41:639–44.

    Article  PubMed  Google Scholar 

  67. Raposio E, Calderazzi F. Fat grafting for chronic heel pain following surgery for adult flatfoot deformity: pilot study. Foot (Edinb). 2017;31:56–60.

    Article  Google Scholar 

  68. Raposio E, Bertozzi N, Bonomini S, Bernuzzi G, Formentini A, Grignaffini E, et al. Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds. 2016;28:126–31.

    PubMed  Google Scholar 

  69. Haiavy J, Elias H. Injectable fillers in the upper face. Atlas Oral Maxillofac Surg Clin North Am. 2016;24:105–16.

    Article  PubMed  Google Scholar 

  70. Zhu M, Cohen SR, Hicok KC, Shanahan RK, Strem BM, Yu JC, et al. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system. Plast Reconstr Surg. 2013;131:873–80.

    Article  CAS  PubMed  Google Scholar 

  71. Ansorge H, Garza JR, McCormack MC, Leamy P, Roesch S, Barere A, et al. Autologous fat processing via the revolve system: quality and quantity of fat retention evaluated in an animal model. Aesthet Surg J. 2014;34:438–47.

    Article  PubMed  Google Scholar 

  72. Lemperle G, Ott H, Charrier U, Hecker J, Lemperle M. PMMA microspheres for intradermal implantation—part I. Animal research. Ann Plast Surg. 1991;26:57–63.

    Article  CAS  PubMed  Google Scholar 

  73. Lemperle G, Gauthier-Hazan N, Wolters M, Eisemann-Klein M, Zimmermann U, Duffy DM. Foreign body granulomas after all injectable dermal fillers: part 1. Possible causes. Plast Reconstr Surg. 2009;123:1842–63.

    Article  CAS  PubMed  Google Scholar 

  74. Greco TM, Antunes MB, Yellin SA. Injectable fillers for volume replacement in the aging face. Facial Plast Surg. 2012;28:8–20.

    Article  CAS  PubMed  Google Scholar 

  75. Cohen SR, Holmes RE. Artecoll: a long-lasting injectable wrinkle filler material: report of a controlled, randomized, multicenter clinical trial of 251 subjects. Plast Reconstr Surg. 2004;114:964–76.

    Article  PubMed  Google Scholar 

  76. Attenello NH, Maas CS. Injectable fillers: review of material and properties. Facial Plast Surg. 2015;31:29–34.

    Article  CAS  PubMed  Google Scholar 

  77. Garson S, Delay E, Sinna R, Cornette de Saint Cyr B,, Taha F. The third dimension of the face aging, improvement of its understanding. Ann Chir Plast Esthet. 2017;62:387–98.

    Article  CAS  PubMed  Google Scholar 

  78. Bartus C, William Hanke C, Daro-Kaftan E. A decade of experience with injectable poly-l-lactic acid: a focus on safety. Dermatol Surg. 2013;39:698–705.

    Article  CAS  PubMed  Google Scholar 

  79. Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate)(PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHB/VA). J Biomed Mater Res. 1993;27:1135–48.

    Article  CAS  PubMed  Google Scholar 

  80. Kontis TC. Contemporary review of injectable facial fillers. JAMA Facial Plast Surg. 2013;15:58–64.

    Article  PubMed  Google Scholar 

  81. Hobar PC, Pantaloni M, Byrd HS. Porous hydroxyapatite granules for alloplastic enhancement of the facial region. Clin Plast Surg. 2000;27:557–69.

    CAS  PubMed  Google Scholar 

  82. Luebberding S, Alexiades-Armenakas M. Facial volume augmentation in 2014: overview of different filler options. J Drugs Dermatol. 2013;12:1339–44.

    CAS  PubMed  Google Scholar 

  83. Marmur ES, Phelps R, Goldberg DJ. Clinical, histologic and electron microscopic findings after injection of a calcium hydroxylapatite filler. J Cosmet Laser Ther. 2004;6:223–6.

    Article  PubMed  Google Scholar 

  84. Smith S, Busso M, McClaren M, Bass LS. A randomized, bilateral, prospective comparison of calcium hydroxylapatite microspheres versus human-based collagen for the correction of nasolabial folds. Dermatol Surg. 2007;33 Suppl 2:S112–21.

    PubMed  Google Scholar 

  85. Gabriel A, Champaneria MC, Maxwell GP. Fat grafting and breast reconstruction: tips for ensuring predictability. Gland Surg. 2015;4:232–43.

    PubMed  PubMed Central  Google Scholar 

  86. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev. 2010;16:413–26.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Song WY, Liu GM, Li J, Luo YG. Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects. Tissue Eng Regen Med. 2016;13:750–61.

    Article  CAS  Google Scholar 

  88. Sobhani A, Rafienia M, Ahmadian M, Naimi-Jamal MR. Fabrication and characterization of polyphosphazene/calcium phosphate scaffolds containing chitosan microspheres for sustained release of bone morphogenetic protein 2 in bone tissue engineering. Tissue Eng Regen Med. 2017;14:525–38.

    Article  CAS  Google Scholar 

  89. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    Article  CAS  PubMed  Google Scholar 

  90. Hong L, Peptan IA, Colpan A, Daw JL. Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs. 2006;183:133–40.

    Article  CAS  PubMed  Google Scholar 

  91. Combellack EJ, Jessop ZM, Naderi N, Griffin M, Dobbs T, Ibrahim A, et al. Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surg. 2016;5:227–41.

    PubMed  PubMed Central  Google Scholar 

  92. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg. 2008;32:48–55.

    Article  Google Scholar 

  93. Butler MJ, Sefton MV. Cotransplantation of adipose-derived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice. Tissue Eng Part A. 2012;18:1628–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee JM, Moon KC, Han SK, Jeong SH, Kim WK. What tissue is formed after graft of adipose-derived stromal vascular fraction cells? J Craniofac Surg. 2013;24:636–9.

    Article  PubMed  Google Scholar 

  95. Yao R, Zhang R, Luan J, Lin F. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication. 2012;4:025007.

    Article  PubMed  CAS  Google Scholar 

  96. Kim WS, Mooney DJ, Arany PR, Lee K, Huebsch N, Kim J. Adipose tissue engineering using injectable, oxidized alginate hydrogels. Tissue Eng Part A. 2012;18:737–43.

    Article  CAS  PubMed  Google Scholar 

  97. Turner AE, Yu C, Bianco J, Watkins JF, Flynn LE. The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials. 2012;33:4490–9.

    Article  CAS  PubMed  Google Scholar 

  98. Xu J, Chen Y, Yue Y, Sun J, Cui L. Reconstruction of epidural fat with engineered adipose tissue from adipose derived stem cells and PLGA in the rabbit dorsal laminectomy model. Biomaterials. 2012;33:6965–73.

    Article  CAS  PubMed  Google Scholar 

  99. Lee TJ, Bhang SH, La WG, Kwon SH, Shin JY, Yoon HH, et al. Volume-stable adipose tissue formation by implantation of human adipose-derived stromal cells using solid free-form fabrication-based polymer scaffolds. Ann Plast Surg. 2013;70:98–102.

    Article  CAS  PubMed  Google Scholar 

  100. Wang JQ, Fan J, Gao JH, Zhang C, Bai SL. Comparison of in vivo adipogenic capabilities of two different extracellular matrix microparticle scaffolds. Plast Reconstr Surg. 2013;131:174e–87.

    Article  CAS  PubMed  Google Scholar 

  101. Yeon B, Park MH, Moon HJ, Kim SJ, Cheon YW, Jeong B. 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(l-alanine) diblock copolymer thermogel. Biomacromolecules. 2013;14:3256–66.

    Article  CAS  PubMed  Google Scholar 

  102. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials. 2014;35:1914–23.

    Article  CAS  PubMed  Google Scholar 

  103. Lequeux C, Rodriguez J, Boucher F, Rouyer O, Damour O, Mojallal A, et al. In vitro and in vivo biocompatibility, bioavailability and tolerance of an injectable vehicle for adipose-derived stem/stromal cells for plastic surgery indications. J Plast Reconstr Aesthet Surg. 2015;68:1491–7.

    Article  PubMed  Google Scholar 

  104. Jaikumar D, Sajesh KM, Soumya S, Nimal TR, Chennazhi KP, Nair SV, et al. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol. 2015;74:318–26.

    Article  CAS  PubMed  Google Scholar 

  105. Lu Y, Jia C, Bi B, Chen L, Zhou Y, Yang P, et al. Injectable SVF-loaded porcine extracellular matrix powders for adipose tissue engineering. Rsc Adv. 2016;6:53034–42.

    Article  CAS  Google Scholar 

  106. Zhang K, Song L, Wang J, Yan S, Li G, Cui L, et al. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomater. 2017;51:246–57.

    Article  CAS  PubMed  Google Scholar 

  107. Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Concise review: the use of adipose-derived stromal vascular fraction cells and platelet rich plasma in regenerative plastic surgery. Stem Cells. 2017;35:117–34.

    Article  PubMed  Google Scholar 

  108. Cervelli V, Scioli MG, Gentile P, Doldo E, Bonanno E, Spagnoli LG, et al. Platelet-rich plasma greatly potentiates insulin-induced adipogenic differentiation of human adipose-derived stem cells through a serine/threonine kinase Akt-dependent mechanism and promotes clinical fat graft maintenance. Stem Cell Transl Med. 2012;1:206–20.

    Article  CAS  Google Scholar 

  109. Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Curcio CB, et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cell Transl Med. 2012;1:341–51.

    Article  CAS  Google Scholar 

  110. Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M, et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg. 2014;25:267–72.

    Article  PubMed  Google Scholar 

  111. Liao HT, James IB, Marra KG, Rubin JP. The effects of platelet-rich plasma on cell proliferation and adipogenic potential of adipose-derived stem cells. Tissue Eng Part A. 2015;21:2714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seyhan N, Alhan D, Ural AU, Gunal A, Avunduk MC, Savaci N. The effect of combined use of platelet-rich plasma and adipose-derived stem cells on fat graft survival. Ann Plast Surg. 2015;74:615–20.

    Article  CAS  PubMed  Google Scholar 

  113. Li K, Li F, Li J, Wang H, Zheng X, Long J, et al. Increased survival of human free fat grafts with varying densities of human adipose-derived stem cells and platelet-rich plasma. J Tissue Eng Regen Med. 2017;11:209–19.

    Article  CAS  PubMed  Google Scholar 

  114. Ohta H, Itoh N. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism. Front Endocrinol (Lausanne). 2014;5:18.

    Google Scholar 

  115. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316:129–39.

    Article  CAS  PubMed  Google Scholar 

  116. Ogushi Y, Sakai S, Kawakami K. Adipose tissue engineering using adipose-derived stem cells enclosed within an injectable carboxymethylcellulose-based hydrogel. J Tissue Eng Regen Med. 2013;7:884–92.

    Article  CAS  PubMed  Google Scholar 

  117. Sumi Y, Ishihara M, Kishimoto S, Takikawa M, Doumoto T, Azuma R, et al. Transplantation of inbred adipose-derived stromal cells in rats with plasma gel containing fragmin/protamine microparticles and FGF-2. J Biomed Mater Res B Appl Biomater. 2013;101:784–91.

    Article  PubMed  CAS  Google Scholar 

  118. Ito R, Morimoto N, Liem PH, Nakamura Y, Kawai K, Taira T, et al. Adipogenesis using human adipose tissue-derived stromal cells combined with a collagen/gelatin sponge sustaining release of basic fibroblast growth factor. J Tissue Eng Regen Med. 2014;8:1000–8.

    Article  CAS  PubMed  Google Scholar 

  119. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  120. Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation. 1998;98:2108–16.

    Article  CAS  PubMed  Google Scholar 

  121. Kim MH, Hong HN, Hong JP, Park CJ, Kwon SW, Kim SH, et al. The effect of VEGF on the myogenic differentiation of adipose tissue derived stem cells within thermosensitive hydrogel matrices. Biomaterials. 2010;31:1213–8.

    Article  CAS  PubMed  Google Scholar 

  122. Colazzo F, Alrashed F, Saratchandra P, Carubelli I, Chester AH, Yacoub MH, et al. Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors. 2014;32:139–49.

    Article  CAS  PubMed  Google Scholar 

  123. Gorkun AA, Shpichka AI, Zurina IM, Koroleva AV, Kosheleva NV, Nikishin DA, et al. Angiogenic potential of spheroids from umbilical cord and adipose-derived multipotent mesenchymal stromal cells within fibrin gel. Biomed Mater. 2018;13:044108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016936920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Su Cho.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, KH., Uthaman, S., Park, IK. et al. Injectable Biomaterials in Plastic and Reconstructive Surgery: A Review of the Current Status. Tissue Eng Regen Med 15, 559–574 (2018). https://doi.org/10.1007/s13770-018-0158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0158-2

Keywords

Navigation