Skip to main content
Log in

Graphene as an Enabling Strategy for Dental Implant and Tissue Regeneration

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Graphene-based approaches have been influential in the design and manipulation of dental implants and tissue regeneration to overcome the problems associated with traditional titanium-based dental implants, such as their low biological affinity. Here, we describe the current progress of graphene-based platforms, which have contributed to major advances for improving cellular functions in in vitro and in vivo applications of dental implants. We also present opinions on the principal challenges and future prospects for new graphene-based platforms for the development of advanced graphene dental implants and tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis D. Clinical manual of implant dentistry. Br Dent J. 2004;196:118.

    Article  Google Scholar 

  2. Albrektsson T, Sennerby L. State of the art in oral implants. J Clin Periodnntol. 1991;18:474–81.

    Article  CAS  Google Scholar 

  3. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993;43:245–53.

    CAS  PubMed  Google Scholar 

  4. Brånemark PI, Hansson B, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.

    PubMed  Google Scholar 

  5. Tomasi C, Wennström J, Berglundh T. Longevity of teeth and implants–a systematic review. J Oral Rehabil. 2008;35:23–32.

    Article  PubMed  Google Scholar 

  6. Ad Hoc Committee for the Development of Dental Implant Guidelines. Guidelines for the provision of dental implants. Int J Oral Maxillofac Implants. 2008;23:471–3.

    Google Scholar 

  7. Schnitman PA. Implant dentistry: where are we now? J Am Dent Assoc. 1993;124:38–47.

    Article  CAS  PubMed  Google Scholar 

  8. Davies J, Mechanisms of endosseous integration. Int J Prosthodont 1998; 11.

  9. Steflik D, Corpe RS, Young TR, Sisk A, Parr G. The biologic tissue responses to uncoated and coated implanted biomaterials. Adv Dent Res. 1999;13:27–33.

    Article  CAS  PubMed  Google Scholar 

  10. Smith DC, Dental implants: materials and design considerations. Int J Prosthodont 1993; 6.

  11. Brunski JB. Biomechanics of oral implants: future research directions. J Dent Educ. 1988;52:775–87.

    CAS  PubMed  Google Scholar 

  12. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  PubMed  CAS  Google Scholar 

  13. Cook SD, Kay JF, Thomas KA, Jarcho M, Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 1987; 2.

  14. Kim HS, Kim YJ, Jang JH, Park JW. Surface engineering of nanostructured titanium implants with bioactive ions. J Dent Res. 2016;95:558–65.

    Article  CAS  PubMed  Google Scholar 

  15. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K. A roadmap for graphene. Nature. 2012;490:192–200.

    Article  CAS  PubMed  Google Scholar 

  16. Xie Y, Li H, Ding C, Zheng X, Li K. Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating. Int J Nanomed. 2015;10:3855.

    Article  CAS  Google Scholar 

  17. Poot M, van der Zant HS. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92:063111.

    Article  CAS  Google Scholar 

  18. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344–53.

    Article  CAS  PubMed  Google Scholar 

  19. Kaya C, Singh I, Boccaccini AR. Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv Eng Mater. 2008;10:131–8.

    Article  CAS  Google Scholar 

  20. Hu W, Peng C, Luo W, Lv M, Li X, Li D, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4:4317–23.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130:10876–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim J, Kim YR, Kim Y, Lim KT, Seonwoo H, Park S, et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. J Mater Chem B. 2013;1:933–8.

    Article  CAS  Google Scholar 

  23. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 2011;23:263–7.

    Article  CAS  Google Scholar 

  24. Shin YC, Lee JH, Jin L, Kim MJ, Kim YJ, Hyun JK, et al. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnology. 2015;13:1.

    Article  CAS  Google Scholar 

  25. Misch CE. Contemporary implant dentistry. Implant Dentistry. 1999;8:90.

    Article  Google Scholar 

  26. Driskell T. History of implants. CDA J. 1987;15:16–25.

    CAS  PubMed  Google Scholar 

  27. Albrektsson T, Zarb G, Worthington P, Eriksson A. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11–25.

    CAS  PubMed  Google Scholar 

  28. Chuang S, Wei L, Douglass C, Dodson T. Risk factors for dental implant failure: a strategy for the analysis of clustered failure-time observations. J Dent Res. 2002;81:572–7.

    Article  CAS  PubMed  Google Scholar 

  29. Tonetti MS. Determination of the success and failure of root-form osseointegrated dental implants. Adv Dent Res. 1999;13:173–80.

    Article  CAS  PubMed  Google Scholar 

  30. Mendonça G, Mendonça DB, Aragao FJ, Cooper LF. Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials. 2008;29:3822–35.

    Article  PubMed  CAS  Google Scholar 

  31. Pilliar RM. Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dent. 1998;7:305–14.

    Article  CAS  PubMed  Google Scholar 

  32. Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329–46.

    Article  CAS  PubMed  Google Scholar 

  33. Sul YT, Johansson CB, Röser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials. 2002;23:1809–17.

    Article  CAS  PubMed  Google Scholar 

  34. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res. 2002;13:252–9.

    Article  PubMed  Google Scholar 

  35. Kim YH, Koak JY, Chang IT, Wennerberg A, Heo SJ. A histomorphometric analysis of the effects of various surface treatment methods on osseointegration. Int J Oral Maxillofac Implants. 2003:18:349–56.

    PubMed  Google Scholar 

  36. Block MS, Kent JN, Kay JF. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg. 1987;45:601–7.

    Article  CAS  PubMed  Google Scholar 

  37. Hahn H, Palich W. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J Biomed Mater Res. 1970;4:571–7.

    Article  CAS  PubMed  Google Scholar 

  38. Cochran DL, Buser D, Ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et al. The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface. Clin Oral Implants Res. 2002;13:144–53.

    Article  PubMed  Google Scholar 

  39. Sanz A, Oyarzún A, Farias D, Diaz I. Experimental study of bone response to a new surface treatment of endosseous titanium implants. Implant Dent. 2001;10:126–31.

    Article  CAS  PubMed  Google Scholar 

  40. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–75.

    Article  CAS  PubMed  Google Scholar 

  41. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease:current concepts. J Periodontol. 1992;63:322–31.

    Article  CAS  PubMed  Google Scholar 

  42. Dard M, Sewing A, Meyer J, Verrier S, Roessler S, Scharnweber D. Tools for tissue engineering of mineralized oral structures. Clin Oral Investig. 2000;4:126–9.

    Article  CAS  PubMed  Google Scholar 

  43. Schliephake H, Scharnweber D, Dard M, Rößler S, Sewing A, Meyer J, et al. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. Clin Oral Implants Res. 2002;13:312–9.

    Article  PubMed  Google Scholar 

  44. Puleo D, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  PubMed  Google Scholar 

  45. Ratner BD. Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J Dent Educ. 2001;65:1340–7.

    CAS  PubMed  Google Scholar 

  46. Ogawa T, Nishimura I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants. 2003;18:2.

    CAS  Google Scholar 

  47. Park JE, Park IS, Neupane MP, Bae TS, Lee MH. Effects of a carbon nanotube-collagen coating on a titanium surface on osteoblast growth. Appl Surf Sci. 2014;292:828–36.

    Article  CAS  Google Scholar 

  48. Nishida E, Miyaji H, Umeda J, Kondoh K, Takita H, Kanayama I, et al. Biological response to nanostructure of carbon nanotube/titanium composite surfaces. Nano Biomed. 2015;7:11–20.

    Google Scholar 

  49. Subramani K, Pandruvada S, Puleo D, Hartsfield J, Huja S. In vitro evaluation of osteoblast responses to carbon nanotube-coated titanium surfaces. Prog Orthod. 2016 Jul 27 [Epub].

  50. Terada M, Abe S, Akasaka T, Uo M, Kitagawa Y, Watari F. Multiwalled carbon nanotube coating on titanium. Biomed Mater Eng. 2009;19:45–52.

    PubMed  Google Scholar 

  51. Prodana M, Duta M, Ionita D, Bojin D, Stan MS, Dinischiotu A, et al. A new complex ceramic coating with carbon nanotubes, hydroxyapatite and TiO2 nanotubes on Ti surface for biomedical applications. Ceram Int. 2015;41:6318–25.

    Article  CAS  Google Scholar 

  52. Bai Y, Neupane MP, Park IS, Lee MH, Bae TS, Watari F, et al. Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate. Mater Sci Eng C. 2010;30:1043–9.

    Article  CAS  Google Scholar 

  53. Chetibi L, Achour A, Peszke J, Hamana D, Achour S. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet. J Mater Sci. 2014;49:621–32.

    Article  CAS  Google Scholar 

  54. Abrishamchian A, Hooshmand T, Mohammadi M, Najafi F. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4 V by sol–gel method for biomedical applications: an in vitro study. Mater Sci Eng C. 2013;33:2002–10.

    Article  CAS  Google Scholar 

  55. Park JE, Park IS, Bae TS, Lee MH, Electrophoretic deposition of carbon nanotubes over TiO2 nanotubes: evaluation of surface properties and biocompatibility. Bioinorg Chem Appl. 2014;2014:236521.

  56. Gopi D, Nithiya S, Shinyjoy E, Rajeswari D, Kavitha L. Carbon nanotubes/carboxymethyl chitosan/mineralized hydroxyapatite composite coating on ti-6al-4v alloy for improved mechanical and biological properties. Ind Eng Chem Res. 2014;53:7660–9.

    Article  CAS  Google Scholar 

  57. Gonçalves JP, Shaikh AQ, Reitzig M, Kovalenko DA, Michael J, Beutner R, et al. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application. Beilstein J Org Chem. 2014;10:2765–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Segerström S, Ruyter IE. Adhesion properties in systems of laminated pigmented polymers, carbon–graphite fiber composite framework and titanium surfaces in implant suprastructures. Dent Mater. 2009;25:1169–77.

    Article  PubMed  CAS  Google Scholar 

  59. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4:445.

    Article  CAS  Google Scholar 

  60. Nag S, Banerjee R, Fraser H. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C. 2005;25:357–62.

    Article  CAS  Google Scholar 

  61. Miller P, Holladay J. Friction and wear properties of titanium. Wear. 1958;2:133–40.

    Article  Google Scholar 

  62. Kang SW, La WG, Kang JM, Park JH, Kim BS. Bone morphogenetic protein-2 enhances bone regeneration mediated by transplantation of osteogenically undifferentiated bone marrow-derived mesenchymal stem cells. Biotechnol Lett. 2008;30:1163–8.

    Article  CAS  PubMed  Google Scholar 

  63. Satheesh K, Jayavel R. Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater Lett. 2013;113:5–8.

    Article  CAS  Google Scholar 

  64. Tanurat P, Sirivisoot S. Osteoblast proliferation on graphene oxide eletrodeposited on anodized titanium. In Biomedical Engineering International Conference (BMEiCON), 8th. 2015 Nov 25. IEEE; 2015. pp. 1–5.

  65. Rojas M, Leiva E. Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates. Phys Rev B. 2007;76:155415.

    Article  CAS  Google Scholar 

  66. La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small. 2013;9:4051–60.

    Article  CAS  PubMed  Google Scholar 

  67. La WG, Jin M, Park S, Yoon HH, Jeong GJ, Bhang SH, et al. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomed. 2014;9:107–16.

    Google Scholar 

  68. Hylden JL, Wilcox GL. Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res. 1981;217:212–5.

    Article  CAS  PubMed  Google Scholar 

  69. Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, et al. Toward clean and crackless transfer of graphene. ACS Nano. 2011;5:9144–53.

    Article  PubMed  CAS  Google Scholar 

  70. Kalisz M, Grobelny M, Mazur M, Zdrojek M, Wojcieszak D, Winiarski M, et al. Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb2O5 layer on Ti–Al–V alloy for dental implants applications. Thin Solid Films. 2015;589:356–63.

    Article  CAS  Google Scholar 

  71. Jung HS, Choi YJ, Jeong J, Lee Y, Hwang B, Jang J, et al. Nanoscale graphene coating on commercially pure titanium for accelerated bone regeneration. RSC Advances. 2016;6:26719–24.

    Article  CAS  Google Scholar 

  72. Jung HS, Lee T, Kwon IK, Kim HS, Hahn SK, Lee CS. Surface modification of multipass caliber-rolled ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl Mater Interfaces. 2015;7:9598–607.

    Article  CAS  PubMed  Google Scholar 

  73. Fukada Y, Nagarajan N, Mekky W, Bao Y, Kim HS, Nicholson PS. Electrophoretic deposition—mechanisms, myths and materials. J Mater Sci. 2004;39:787–801.

    Article  CAS  Google Scholar 

  74. Shi YY, Li M, Liu Q, Jia ZJ, Xu XC, Cheng Y, et al. Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci-Mater Med. 2016;27:1–13.

    Google Scholar 

  75. He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, et al. Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interfaces. 2015;7:5605–11.

    Article  CAS  PubMed  Google Scholar 

  76. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5:6971–80.

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6:1879–89.

    Article  CAS  PubMed  Google Scholar 

  78. Marimuthu M, Veerapandian M, Ramasundaram S, Hong SW, Sudhagar P, Nagarajan S, et al. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability. Appl Surf Sci. 2014;293:124–31.

    Article  CAS  Google Scholar 

  79. Bit A, Bissoyi A, Sinha SK, Patra PK, Saha S. The inhibition of bio-film formation by graphene-modified stainless steel and titanium alloy for the treatment of periprosthetic infection: a comparative study. In Biomedical Engineering Conference (SBEC), 32nd Southern 2016, Mar 11 IEEE; 2016. pp. 86–88.

  80. Zeng Y, Pei X, Yang S, Qin H, Cai H, Hu S, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf Coat Technol. 2016;286:72–9.

    Article  CAS  Google Scholar 

  81. Zhou Q, Yang P, Li X, Liu H, Ge S. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide. Sci Rep. 2016 Jan 14 [Epub].

  82. Rosa V, Xie H, Dubey N, Madanagopal TT, Rajan SS, Morin JLP, et al. Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent Mater. 2016;32:1–7.

    Article  CAS  Google Scholar 

  83. Nakamura M, Kawahara M, Morishige N, Chikama T, Nakata K, Nishida T. Promotion of corneal epithelial wound healing in diabetic rats by the combination of a substance P-derived peptide (FGLM-NH2) and insulin-like growth factor-1. Diabetologia. 2003;46:839–42.

    Article  CAS  PubMed  Google Scholar 

  84. Kohara H, Tajima S, Yamamoto M, Tabata Y. Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials. 2010;31:8617–25.

    Article  CAS  PubMed  Google Scholar 

  85. Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43.

    Article  CAS  PubMed  Google Scholar 

  86. Kim J, Choi KS, Kim Y, Lim KT, Seonwoo H, Park Y, et al. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J Biomed Mater Res A. 2013;101:3520–30.

    Article  PubMed  CAS  Google Scholar 

  87. Kim J, Bae WG, Park S, Kim YJ, Jo I, Park S, et al. Engineering structures and functions of mesenchymal stem cells by suspended large-area graphene nanopatterns. 2D Mater. 2016;3:035013.

    Article  Google Scholar 

  88. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants. 1999;15:15–46.

    Google Scholar 

  89. Adell R, Lekholm U, Brånemark P, Lindhe J, Rockler B, Eriksson B, et al. Marginal tissue reactions at osseointegrated titanium fixtures. Swedish Dent J Suppl. 1984;28:175–81.

    Google Scholar 

  90. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano. 2013;7:8972–80.

    Article  CAS  PubMed  Google Scholar 

  91. Kim IY, Park S, Kim H, Park S, Ruoff RS, Hwang SJ. Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: an effective way to tailor the physicochemical and antibacterial properties of graphene film. Adv Funct Mater. 2014;24:2288–94.

    Article  CAS  Google Scholar 

  92. Some S, Ho SM, Dua P, Hwang E, Shin YH, Yoo H, et al. Dual functions of highly potent graphene derivative–poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano. 2012;6:7151–61.

    Article  CAS  PubMed  Google Scholar 

  93. Xie AG, Cai X, Lin MS, Wu T, Zhang XJ, Lin ZD, et al. Long-acting antibacterial activity of quaternary phosphonium salts functionalized few-layered graphite. Mater Sci Eng B. 2011;176:1222–6.

    Article  CAS  Google Scholar 

  94. Carpio IEM, Mangadlao JD, Nguyen HN, Advincula RC, Rodrigues DF. Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon. 2014;77:289–301.

    Article  CAS  Google Scholar 

  95. Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF. Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology. 2012;23:395101.

    Article  PubMed  CAS  Google Scholar 

  96. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale. 2011;3:1252–7.

    CAS  PubMed  Google Scholar 

  98. Lee WC, Lim CHY, Shi H, Tang LA, Wang Y, Lim CT, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5:7334–41.

    Article  CAS  PubMed  Google Scholar 

  99. Gao J, Bao F, Feng L, Shen K, Zhu Q, Wang D, et al. Functionalized graphene oxide modified polysebacic anhydride as drug carrier for levofloxacin controlled release. RSC Adv. 2011;1:1737–44.

    Article  CAS  Google Scholar 

  100. Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale. 2011;3:4104–8.

    Article  CAS  PubMed  Google Scholar 

  101. Mazaheri M, Akhavan O, Simchi A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl Surf Sci. 2014;301:456–62.

    Article  CAS  Google Scholar 

  102. Faghihi S, Gheysour M, Karimi A, Salarian R. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys. 2014;115:083513.

    Article  CAS  Google Scholar 

  103. Si H, Luo H, Xiong G, Yang Z, Raman SR, Guo R, et al. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun. 2014;35:1706–11.

    Article  CAS  PubMed  Google Scholar 

  104. Kim J, Bae WG, Choung HW, Lim KT, Seonwoo H, Jeong HE, et al. Multiscale patterned transplantable stem cell patches for bone tissue regeneration. Biomaterials. 2014;35:9058–67.

    Article  CAS  PubMed  Google Scholar 

  105. Kim JH, Choung PH, Kim IY, Lim KT, Son HM, Choung YH, et al. Electrospun nanofibers composed of poly (ε-caprolactone) and polyethylenimine for tissue engineering applications. Mater Sci Eng C. 2009;29:1725–31.

    Article  CAS  Google Scholar 

  106. Liu F, Choi JY, Seo TS. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron. 2010;25:2361–5.

    Article  CAS  PubMed  Google Scholar 

  107. Lu CH, Li J, Liu JJ, Yang HH, Chen X, Chen GN. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the “nanoquencher”. Chem Eur J. 2010;16:4889–94.

    Article  CAS  PubMed  Google Scholar 

  108. He S, Song B, Li D, Zhu C, Qi W, Wen Y, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater. 2010;20:453–9.

    Article  CAS  Google Scholar 

  109. Chen B, Liu M, Zhang LM, Huang J, Yao J-L, Zhang ZJ. Polyethyleniminefunctionalized graphene oxide as an efficient gene delivery vector. J Mater Chem. 2011;21:7736–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2016M3A9B4919374).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Pil Lim or Jangho Kim.

Ethics declarations

Conflicts of Interest

The authors have no financial conflicts of interest.

Ethical Statement

There are no animal experiments carried out for this article.

Additional information

Chan Park and Sunho Park contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Park, S., Lee, D. et al. Graphene as an Enabling Strategy for Dental Implant and Tissue Regeneration. Tissue Eng Regen Med 14, 481–493 (2017). https://doi.org/10.1007/s13770-017-0052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0052-3

Keywords

Navigation