Skip to main content

Potential Applications of Graphene-Based Nanomaterials in Biomedical, Dental, and Implant Applications

  • Chapter
  • First Online:
Advances in Dental Implantology using Nanomaterials and Allied Technology Applications

Abstract

Graphene-based materials have gained extensive attention in the field of research seeking novel materials for biomedicine, dentistry, and implantology due to their unique physicochemical properties, high strength, thermal stability, electrical conductivity, chemical purity, large surface area, and the possibility of functionalization. Graphene-based nanomaterial can be used for various applications, such as antimicrobial agent, biocompatible coatings and anticorrosion, drug delivery, and therapy. This chapter summarizes the basic properties of graphene and the latest progress based on current knowledge. The comprehensive review of graphene-based materials and their possible applications focusing on dentistry and dental implantology is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  CAS  Google Scholar 

  2. Katsnelson MI. Graphene: carbon in two dimensions. Mater Today. 2007;10:20–7.

    Article  CAS  Google Scholar 

  3. Kuill T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–75.

    Article  CAS  Google Scholar 

  4. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490:192–200.

    Article  CAS  Google Scholar 

  5. Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett. 2008;8:1679–82.

    Article  CAS  Google Scholar 

  6. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.

    Article  CAS  Google Scholar 

  7. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V. Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015;2015:804213.

    Article  CAS  Google Scholar 

  8. Rosa V, Zhang Z, Grande RH, Nor JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92:970–5.

    Article  CAS  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282–6.

    Article  CAS  Google Scholar 

  10. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev. 2013;113:3407–24.

    Article  CAS  Google Scholar 

  11. Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics. 2012;2:283–94.

    Article  CAS  Google Scholar 

  12. Bianco A, Cheng H-M, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, et al. All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon. 2013;65:1–6.

    Article  CAS  Google Scholar 

  13. Al-Sherbini A-S, Bakr M, Ghoneim I, Saad M. Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene. J Adv Res. 2017;8:209–15.

    Article  CAS  Google Scholar 

  14. Geim AK. Nobel Lecture: random walk to graphene. Rev Mod Phys. 2011;83:851–62.

    Article  CAS  Google Scholar 

  15. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75–127.

    Article  CAS  Google Scholar 

  16. Guy OJ, Walker K-AD. Chapter 4—Graphene functionalization for biosensor applications. In: Saddow SE, editor. Silicon carbide biotechnology. 2nd ed. Amsterdam: Elsevier; 2016. p. 85–141.

    Chapter  Google Scholar 

  17. Michon A, Vézian S, Ouerghi A, Zielinski M, Chassagne T, Portail M. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition. Appl Phys Lett. 2010;97:171909.

    Article  CAS  Google Scholar 

  18. de Heer WA, Berger C. Epitaxial graphene. J Phys D Appl Phys. 2012;45:150301.

    Article  CAS  Google Scholar 

  19. Järvinen P, Hämäläinen SK, Banerjee K, Häkkinen P, Ijäs M, Harju A, et al. Molecular self-assembly on graphene on SiO2 and h-BN substrates. Nano Lett. 2013;13:3199–204.

    Article  CAS  Google Scholar 

  20. Wang QH, Hersam MC. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat Chem. 2009;1:206–11.

    Article  CAS  Google Scholar 

  21. Wang X, Xu J-B, Xie W, Du J. Quantitative analysis of graphene doping by organic molecular charge transfer. J Phys Chem C. 2011;115:7596–602.

    Article  CAS  Google Scholar 

  22. Hämäläinen SK, Stepanova M, Drost R, Liljeroth P, Lahtinen J, Sainio J. Self-assembly of cobalt-phthalocyanine molecules on epitaxial graphene on Ir(111). J Phys Chem C. 2012;116:20433–7.

    Article  CAS  Google Scholar 

  23. Mao J, Zhang H, Jiang Y, Pan Y, Gao M, Xiao W, et al. Tunability of supramolecular kagome lattices of magnetic phthalocyanines using graphene-based Moiré patterns as templates. J Am Chem Soc. 2009;131:14136–7.

    Article  CAS  Google Scholar 

  24. MacLeod JM, Rosei F. Molecular self-assembly on graphene. Small. 2014;10:1038–49.

    Article  CAS  Google Scholar 

  25. Xu Y, Cao H, Xue Y, Li B, Cai W. Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials (Basel, Switzerland). 2018;8:942.

    Article  CAS  Google Scholar 

  26. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater. 2014;13:624–30.

    Article  CAS  Google Scholar 

  27. Ciesielski A, Samori P. Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev. 2014;43:381–98.

    Article  CAS  Google Scholar 

  28. Shen Z, Li J, Yi M, Zhang X, Ma S. Preparation of graphene by jet cavitation. Nanotechnology. 2011;22:365306.

    Article  CAS  Google Scholar 

  29. Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, et al. Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano. 2017;11:2742–55.

    Article  CAS  Google Scholar 

  30. Lotya M, King PJ, Khan U, De S, Coleman JN. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano. 2010;4:3155–62.

    Article  CAS  Google Scholar 

  31. Han JT, Jang JI, Kim H, Hwang JY, Yoo HK, Woo JS, et al. Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation. Sci Rep. 2014;4:5133.

    Article  CAS  Google Scholar 

  32. Pavlova AS, Obraztsova EA, Belkin AV, Monat C, Rojo-Romeo P, Obraztsova ED. Liquid-phase exfoliation of flaky graphite. J Nanophoton. 2016;10:012525.

    Article  Google Scholar 

  33. Lin Z, Karthik PS, Hada M, Nishikawa T, Hayashi Y. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication. Nanomaterials (Basel). 2017;7:125.

    Article  CAS  Google Scholar 

  34. Chen K, Shi L, Zhang Y, Liu Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem Soc Rev. 2018;47:3018–36.

    Article  CAS  Google Scholar 

  35. Ambrosi A, Pumera M. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale. 2014;6:472–6.

    Article  CAS  Google Scholar 

  36. Khan A, Islam SM, Ahmed S, Kumar RR, Habib MR, Huang K, et al. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv Sci (Weinh). 2018;5:1800050.

    Article  CAS  Google Scholar 

  37. Wang H, Yu G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv Mater. 2016;28:4956–75.

    Article  CAS  Google Scholar 

  38. Teng PY, Lu CC, Akiyama-Hasegawa K, Lin YC, Yeh CH, Suenaga K, et al. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012;12:1379–84.

    Article  CAS  Google Scholar 

  39. Morin JLP, Dubey N, Decroix FED, Luong-Van EK, Castro Neto AH, Rosa V. Graphene transfer to 3-dimensional surfaces: a vacuum-assisted dry transfer method. 2D Materials. 2017;4:025060.

    Article  CAS  Google Scholar 

  40. Rodriguez CLC, Kessler F, Dubey N, Rosa V, Fechine GJM. CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surf Coat Technol. 2017;311:10–8.

    Article  CAS  Google Scholar 

  41. Chen K, Chai Z, Li C, Shi L, Liu M, Xie Q, et al. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation. ACS Nano. 2016;10:3665–73.

    Article  CAS  Google Scholar 

  42. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed Engl. 2013;52:9210–4.

    Article  CAS  Google Scholar 

  43. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200.

    Article  CAS  Google Scholar 

  44. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–24.

    Article  CAS  Google Scholar 

  45. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–7.

    Article  CAS  Google Scholar 

  46. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.

    Article  CAS  Google Scholar 

  47. de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B Biointerfaces. 2014;113:115–24.

    Article  CAS  Google Scholar 

  48. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, et al. Spatially resolved Raman Spectroscopy of single- and few-layer graphene. Nano Lett. 2007;7:238–42.

    Article  CAS  Google Scholar 

  49. Lin J, Wang L, Chen G. Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol Lett. 2011;41:209–15.

    Article  CAS  Google Scholar 

  50. Park JH, Park JM. Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surf Coat Technol. 2014;254:167–74.

    Article  CAS  Google Scholar 

  51. Hao J, Ji L, Wu K, Yang N. Electrochemistry of ZnO@reduced graphene oxides. Carbon. 2018;130:480–6.

    Article  CAS  Google Scholar 

  52. Chen J, Zheng X, Wang H, Zheng W. Graphene oxide-Ag nanocomposite: in situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate. Thin Solid Films. 2011;520:179–85.

    Article  CAS  Google Scholar 

  53. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces. 2015;7:6966–73.

    Article  CAS  Google Scholar 

  54. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem. 2018;8:123–37.

    Article  CAS  Google Scholar 

  55. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  CAS  Google Scholar 

  56. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater. 1999;11:771–8.

    Article  CAS  Google Scholar 

  57. Sang Tran T, Dutta NK, Roy Choudhury N. Graphene-based inks for printing of planar micro-supercapacitors: a review. Materials (Basel). 2019;12:978.

    Article  CAS  Google Scholar 

  58. Zhao C, Pandit S, Fu Y, Mijakovic I, Jesorka A, Liu J. Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. RSC Adv. 2016;6:38124–34.

    Article  CAS  Google Scholar 

  59. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC. Raman Scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006;6:2667–73.

    Article  CAS  Google Scholar 

  60. Shearer CJ, Slattery AD, Stapleton AJ, Shapter JG, Gibson CT. Accurate thickness measurement of graphene. Nanotechnology. 2016;27:125704.

    Article  CAS  Google Scholar 

  61. Lin Z, Ye X, Han J, Chen Q, Fan P, Zhang H, et al. Precise control of the number of layers of graphene by picosecond laser thinning. Sci Rep. 2015;5:11662.

    Article  CAS  Google Scholar 

  62. Lu L, De Hosson JTM, Peia Y. Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon. 2019;144:713–23.

    Article  CAS  Google Scholar 

  63. Wang L, Yang Z, Cui Y, Wei B, Xu S, Sheng J, et al. Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci Rep. 2017;7:41896.

    Article  CAS  Google Scholar 

  64. Rokaya D, Srimaneepong V, Qin J, Siraleartmukul K, Siriwongrungson V. Graphene oxide/silver nanoparticles coating produced by electrophoretic deposition improved the mechanical and tribological properties of NiTi alloy for biomedical applications. J Nanosci Nanotechnol. 2018;18:1–7.

    CAS  Google Scholar 

  65. Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J Adv Res. 2018;14:25–34.

    Article  CAS  Google Scholar 

  66. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3:327–31.

    Article  CAS  Google Scholar 

  67. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011;11:1423–7.

    Article  CAS  Google Scholar 

  68. Banerjee AN. Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus. 2018;8:20170056.

    Article  Google Scholar 

  69. Usachov D, Vilkov O, Gruneis A, Haberer D, Fedorov A, Adamchuk VK, et al. Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 2011;11:5401–7.

    Article  CAS  Google Scholar 

  70. Hoik L, Keewook P, Ick SK. A review of doping modulation in graphene. Synth Met. 2018;244:36–47.

    Article  CAS  Google Scholar 

  71. Johannsen JC, Ulstrup S, Crepaldi A, Cilento F, Zacchigna M, Miwa JA, et al. Tunable carrier multiplication and cooling in graphene. Nano Lett. 2015;15:326–31.

    Article  CAS  Google Scholar 

  72. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9:1752–8.

    Article  CAS  Google Scholar 

  73. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater. 2011;23:1020–4.

    Article  CAS  Google Scholar 

  74. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.

    Article  CAS  Google Scholar 

  75. Yang Y, Asiri AM, Tang Z, Du D, Lin Y. Graphene based materials for biomedical applications. Mater Today. 2013;16:365–73.

    Article  CAS  Google Scholar 

  76. Tong Y, Bohm S, Song M. Graphene based materials and their composites as coatings. Aust J Nanomed Nanotechnol. 2013;1:1003.

    Google Scholar 

  77. Kirkland NT, Schiller T, Medhekar N, Birbilis N. Exploring graphene as a corrosion protection barrier. Corros Sci. 2012;56:1–4.

    Article  CAS  Google Scholar 

  78. Nam JA, Nahain A-A, Kim SM, In I, Park SY. Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity. Acta Biomater. 2013;9:7996–8003.

    Article  CAS  Google Scholar 

  79. Rokaya D, Srimaneepong V, Qin J, Thunyakitpisal P, Siraleartmukul K. Surface adhesion properties and cytotoxicity of graphene oxide coatings and graphene oxide/silver nanocomposite coatings on biomedical NiTi alloy. Sci Adv Mater. 2019;11:1474–87.

    Article  CAS  Google Scholar 

  80. Hui KS, Hui KN, Dinh DA, Tsang CH, Cho YR, Zhou W, et al. Green synthesis of dimension-controlled Silver nanoparticle-graphene oxide with in situ ultrasonication. Acta Mater. 2014;64:326–32.

    Article  CAS  Google Scholar 

  81. Høiby N, Ciofu O, Johansen HK, Song Z-J, Moser C, Jensen PØ, et al. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3:55–65.

    Article  Google Scholar 

  82. Amornvit P, Rokaya D, Bajracharya S, Keawcharoen K, University M, Supavanich W. Management of obstructive sleep apnea with implant retained mandibular advancement device. World J Dent. 2014;5:184–9.

    Article  Google Scholar 

  83. Dubey N, Ellepola K, Decroix FED, Morin JLP, Castro Neto AH, Seneviratne CJ, et al. Graphene onto medical grade titanium: an atom-thick multimodal coating that promotes osteoblast maturation and inhibits biofilm formation from distinct species. Nanotoxicology. 2018;12:274–89.

    Article  CAS  Google Scholar 

  84. Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–14.

    Article  CAS  Google Scholar 

  85. Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15:13849–80.

    Article  CAS  Google Scholar 

  86. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis—a review. Head Face Med. 2014;10:1–13.

    Article  Google Scholar 

  87. Monje A, Insua A, Wang H-L. Understanding peri-implantitis as a plaque-associated and site-specific entity: on the local predisposing factors. J Clin Med. 2019;8:279.

    Article  Google Scholar 

  88. Szunerits S, Boukherroub R. Antibacterial activity of graphene-based materials. J Mater Chem B. 2016;4:6892–912.

    Article  CAS  Google Scholar 

  89. Wong KKY, Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm. 2010;1:125–31.

    Article  CAS  Google Scholar 

  90. Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008;24:2051–6.

    Article  CAS  Google Scholar 

  91. Huang CC, Chen CT, Shiang YC, Lin ZH, Chang HT. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal Chem. 2009;81:875–82.

    Article  CAS  Google Scholar 

  92. Senapati T, Senapati D, Singh AK, Fan Z, Kanchanapally R, Ray PC. Highly selective SERS probe for Hg(ii) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chem Commun. 2011;47:10326–8.

    Article  CAS  Google Scholar 

  93. Agarwalla SV, Ellepola K, Costa M, Fechine GJM, Morin JLP, Castro Neto AH, et al. Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent Mater. 2019;35:403–13.

    Article  CAS  Google Scholar 

  94. Gu M, Lv L, Du F, Niu T, Chen T, Xia D, et al. Effects of thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates. Sci Rep. 2018;8:8141.

    Article  CAS  Google Scholar 

  95. Li J, Wang G, Geng H, Zhu H, Zhang M, Di Z, et al. CVD growth of graphene on NiTi alloy for enhanced biological activity. ACS Appl Mater Interfaces. 2015;7:19876–81.

    Article  CAS  Google Scholar 

  96. Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6:1879–89.

    Article  CAS  Google Scholar 

  97. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, et al. Metallic biomaterials: current challenges and opportunities. Materials (Basel, Switzerland). 2017;10:884.

    Article  CAS  Google Scholar 

  98. McMahon RE, Ma J, Verkhoturov SV, Munoz-Pinto D, Karaman I, Rubitschek F, et al. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys. Acta Biomater. 2012;8:2863–70.

    Article  CAS  Google Scholar 

  99. Goryczka T, Szaraniec B. Characterization of polylactide layer deposited on Ni-Ti shape memory alloy. J Mater Eng Perform. 2014;23:2682–6.

    Article  CAS  Google Scholar 

  100. Li P, Li L, Wang W, Jin W, Liu X, Yeung KWK, et al. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Appl Surf Sci. 2014;297:109–15.

    Article  CAS  Google Scholar 

  101. Li P, Wu G, Xu R, Wang W, Wu S, Yeung KWK, et al. In vitro corrosion inhibition on biomedical shape memory alloy by plasma-polymerized allylamine film. Mater Lett. 2012;89:51–4.

    Article  CAS  Google Scholar 

  102. Mazumder MM, Mehta JL, Mazumder NNA, Trigwell S, Sharma R, et al. Encased stent for rapid endothelialization for preventing restenosis. In: Publication PA, editor. Patent pending, A61F 2/06 Edition. United States; 2004. p. 1–27.

    Google Scholar 

  103. Schellhammer F, Walter M, Berlis A, Bloss H-G, Wellens E, Schumacher M. Polyethylene terephthalate and polyurethane coatings for endovascular stents: preliminary results in canine experimental arteriovenous fistulas. Radiology. 1999;211:169–75.

    Article  CAS  Google Scholar 

  104. Villermaux F, Tabrizian M, Yahia LH, Czeremuszkin G, Piron DL. Corrosion resistance improvement of NiTi osteosynthesis staples by plasma polymerized tetrafluoroethylene coating. Biomed Mater Eng. 1996;6:241–54.

    CAS  Google Scholar 

  105. Tepe G, Schmehl J, Wendel HP, Schaffner S, Heller S, Gianotti M, et al. Reduced thrombogenicity of nitinol stents—in vitro evaluation of different surface modifications and coatings. Biomaterials. 2006;27:643–50.

    Article  CAS  Google Scholar 

  106. Anjum SS, Rao J, Nicholls JR. Polymer (PTFE) and shape memory alloy (NiTi) intercalated nano-biocomposites. Mater Sci Eng. 2012;40:1–7.

    Google Scholar 

  107. De Jesús C, Cruz GJ, Olayo MG, Gómez LM, López-Gracia OG, García-Rosales G, Ramírez-Santiago A, Ríos LC. Coatings by plasmas of pyrrole on nitinol and stainless steel substrates. Superficies y Vacío. 2012;25:157–60.

    Google Scholar 

  108. Yang M-R, Wu SK. DC plasma-polymerized hexamethyldisilazane coatings of an equiatomic TiNi shape memory alloy. Surf Coat Technol. 2000;127:274–81.

    Article  CAS  Google Scholar 

  109. Bhattacharyya A, Dervishi E, Berry B, Viswanathan T, Bourdo S, Kim H, et al. Energy efficient graphite–polyurethane electrically conductive coatings for thermally actuated smart materials. Smart Mater Struct. 2006;15:1–9.

    Google Scholar 

  110. Bravo LA, de Cabanes AG, Manero JM, Ruperez ER, Gil JF. NiTi superelastic orthodontic archwires with polyamide coating. J Mater Sci Mater Med. 2014;25:555–60.

    Article  CAS  Google Scholar 

  111. Carroll WM, Rochev Y, Clarke B, Burke M, Bradley DJ, Plumley DL. Influence of Nitinol wire surface preparation procedures, on cell surface interactions and polymer coating adherence. In: Materials & processes for medical devices conference. Anaheim, CA: ASM International; 2003. p. 63–8.

    Google Scholar 

  112. Raza MA, Rehman ZU, Ghauri FA, Ahmad A, Ahmad R, Raffi M. Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. Thin Solid Films. 2016;620:150–9.

    Article  CAS  Google Scholar 

  113. Nayak PK, Hsu C-J, Wang S-C, Sung JC, Huang J-L. Graphene coated Ni films: a protective coating. Thin Solid Films. 2013;529:312–6.

    Article  CAS  Google Scholar 

  114. Catta K, Lia H, Cuia XT. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion. Acta Biomater. 2016;15:530–40.

    Google Scholar 

  115. Asgar H, Deen KM, Rahman ZU, Shah UH, Raza MA, Haider W. Functionalized graphene oxide coating on Ti6Al4V alloy for improved biocompatibility and corrosion resistance. Mater Sci Eng C Mater Biol Appl. 2019;94:920–8.

    Article  CAS  Google Scholar 

  116. Zhou Q, Yang P, Li X, Liu H, Ge S. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide. Sci Rep. 2016;6:19343.

    Article  CAS  Google Scholar 

  117. Catt K, Li H, Cui XT. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion. Acta Biomater. 2017;48:530–40.

    Article  CAS  Google Scholar 

  118. Singh BP, Nayak S, Nanda KK, Jena BK, Bhattacharjee S, Besra L. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon. 2013;61:47–56.

    Article  CAS  Google Scholar 

  119. Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloys Compd. 2017;716:259–69.

    Article  CAS  Google Scholar 

  120. Podila R, Moore T, Alexis F, Rao A. Graphene coatings for biomedical implants. J Vis Exp. 2013;73:e50276.

    Google Scholar 

  121. Suo L, Jiang N, Wang Y, Wang P, Chen J, Pei X, et al. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J Biomed Mater Res B Appl Biomater. 2019;107:635–45.

    Article  CAS  Google Scholar 

  122. Li K, Wang C, Yan J, Zhang Q, Dang B, Wang Z, et al. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep. 2018;8:1843.

    Article  CAS  Google Scholar 

  123. Prashant PS, Nandan H, Gopalakrishnan M. Friction in orthodontics. J Pharm Bioallied Sci. 2015;7:S334–8.

    Article  CAS  Google Scholar 

  124. Kumar S, Singh S, Hamsa PRR, Ahmed S, Prasanthma, Bhatnagar A, et al. Evaluation of friction in orthodontics using various brackets and archwire combinations-an in vitro study. J Clin Diagn Res. 2014;8:ZC33–6.

    CAS  Google Scholar 

  125. Bhushan B, Kwak KJ, Gupta S, Lee SC. Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces. J R Soc Interface. 2009;6:719–33.

    Article  CAS  Google Scholar 

  126. Liao YS, Benya PD, McKellop HA. Effect of protein lubrication on the wear properties of materials for prosthetic joints. J Biomed Mater Res. 1999;48:465–73.

    Article  CAS  Google Scholar 

  127. Behroozian A, Kachoei M, Khatamian M, Divband B. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets. J Dent Res Dent Clin Dent Prospects. 2016;10:106–11.

    Article  Google Scholar 

  128. Kinoshita H, Nishina Y, Alias AA, Fujii M. Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon. 2014;66:720–3.

    Article  CAS  Google Scholar 

  129. Berman D, Erdemir A, Sumant A. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon. 2013;54:454–9.

    Article  CAS  Google Scholar 

  130. Bulaqi HA, Mousavi Mashhadi M, Geramipanah F, Safari H, Paknejad M. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method. J Prosthet Dent. 2015;113:405–11.

    Article  Google Scholar 

  131. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18:241–68.

    Article  CAS  Google Scholar 

  132. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther. 2018;12:3117–45.

    Article  CAS  Google Scholar 

  133. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.

    Article  CAS  Google Scholar 

  134. Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–12.

    Article  CAS  Google Scholar 

  135. La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small. 2013;9:4051–60.

    Article  CAS  Google Scholar 

  136. Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64–73.

    Article  CAS  Google Scholar 

  137. Yang X, Niu G, Cao X, Wen Y, Xiang R, Duan H, et al. The preparation of functionalized graphene oxide for targeted intracellular delivery of siRNA. J Mater Chem. 2012;22:6649–54.

    Article  CAS  Google Scholar 

  138. Kim H, Namgung R, Singha K, Oh I-K, Kim WJ. Graphene oxide–polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem. 2011;22:2558–67.

    Article  CAS  Google Scholar 

  139. Maher S, Mazinani A, Barati MR, Losic D. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays. Expert Opin Drug Deliv. 2018;15:1021–37.

    Article  CAS  Google Scholar 

  140. Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small. 2011;7:1569–78.

    Article  CAS  Google Scholar 

  141. Mendonca MC, Soares ES, de Jesus MB, Ceragioli HJ, Batista AG, Nyul-Toth A, et al. PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier: an in vitro and in vivo study. Mol Pharm. 2016;13:3913–24.

    Article  CAS  Google Scholar 

  142. Yi L, Zhang Y, Shi X, Du X, Wang X, Yu A, et al. Recent progress of functionalised graphene oxide in cancer therapy. J Drug Target. 2019;27:125–44.

    Article  CAS  Google Scholar 

  143. Wang S-B, Ma Y-Y, Chen X-Y, Zhao Y-Y, Mou X-Z. Ceramide-graphene oxide nanoparticles enhance cytotoxicity and decrease HCC xenograft development: a novel approach for targeted cancer therapy. Front Pharmacol. 2019;10:69.

    Article  CAS  Google Scholar 

  144. Krasteva N, Keremidarska-Markova M, Hristova-Panusheva K, Andreeva T, Speranza G, Wang D, et al. Aminated graphene oxide as a potential new therapy for colorectal cancer. Oxidative Med Cell Longev. 2019;2019:3738980.

    Article  CAS  Google Scholar 

  145. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release. 2004;94:1–14.

    Article  CAS  Google Scholar 

  146. Campbell E, Hasan MT, Pho C, Callaghan K, Akkaraju GR, Naumov AV. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci Rep. 2019;9:416.

    Article  CAS  Google Scholar 

  147. Wang K, Kievit FM, Jeon M, Silber JR, Ellenbogen RG, Zhang M. Nanoparticle-mediated target delivery of TRAIL as gene therapy for glioblastoma. Adv Healthc Mater. 2015;4:2719–26.

    Article  CAS  Google Scholar 

  148. Wang K, Kievit FM, Zhang M. Nanoparticles for cancer gene therapy: recent advances, challenges, and strategies. Pharmacol Res. 2016;114:56–66.

    Article  CAS  Google Scholar 

  149. Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013;25:168–86.

    Article  CAS  Google Scholar 

  150. Goncalves G, Vila M, Portoles MT, Vallet-Regi M, Gracio J, Marques PA. Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthc Mater. 2013;2:1072–90.

    Article  CAS  Google Scholar 

  151. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42:530–47.

    Article  CAS  Google Scholar 

  152. Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine (Lond). 2011;6:317–24.

    Article  CAS  Google Scholar 

  153. Srimaneepong V, Rokaya D, Thunyakitpisal P, Qin J, Saengkiettiyut K. Corrosion resistance of graphene oxide/silver coatings on Ni–Ti alloy and expression of IL-6 and IL-8 in human oral fibroblasts. Sci Rep. 2020;10:3247.

    Google Scholar 

  154. Lategan K, Alghadi H, Bayati M, de Cortalezzi MF, Pool E. Effects of graphene oxide nanoparticles on the immune system biomarkers produced by RAW 264.7 and human whole blood cell cultures. Nanomaterials (Basel). 2018;8:125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viritpon Srimaneepong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rokaya, D., Srimaneepong, V., Thunyakitpisal, P., Qin, J., Rosa, V., Sapkota, J. (2021). Potential Applications of Graphene-Based Nanomaterials in Biomedical, Dental, and Implant Applications. In: Chaughule, R.S., Dashaputra, R. (eds) Advances in Dental Implantology using Nanomaterials and Allied Technology Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52207-0_4

Download citation

Publish with us

Policies and ethics