Skip to main content

Advertisement

Log in

3D bioprinting in tissue engineering and regenerative medicine

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

This review paper is primarily focused on bioprinting technology for biomedical applications. Bioprinting can be utilized for fabrication of wide range of tissue, based on which this chapter describes in detail its application in tissue regeneration. Further, the difficulties and potential in developing a construct for tissue regeneration are discussed herein. In this review paper, application of 3D bioprinting in tissue regeneration will be discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Manuscript does not contain any explicit data to make it available to the readers by default. However, data can be made available on request.

References

  • Abbadessa A, Mouser VHM, Blokzijl MM, Gawlitta D, Dhert WJA, Hennink WE, Malda J, Vermonden T (2016) A synthetic thermosensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromol 17(6):2137–2147

    Article  CAS  Google Scholar 

  • Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P, Kölby L (2017) Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE 12(12):e0189428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bendtsen ST, Quinnell SP, Wei M (2017) Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res Part A 105(5):1457–1468

    Article  CAS  Google Scholar 

  • Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1):014101

    Article  PubMed  CAS  Google Scholar 

  • Binder KW, Zhao W, Aboushwareb T, Dice D, Atala A, Yoo JJ (2010) In situ bioprinting of the skin for burns. J Am Coll Surg 211(3):S76

    Article  Google Scholar 

  • Byambaa B, Annabi N, Yue K, Trujillo-de Santiago G, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015

    Article  CAS  Google Scholar 

  • Cui H, Zhu W, Nowicki M, Zhou X, Khademhosseini A, Zhang LG (2016) Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioactive factors into architectural design. Adv Healthc Mater 5(17):2174–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirtaş TT, Irmak G, Gümüşderelioğlu M (2017) A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 9(3):035003

    Article  PubMed  CAS  Google Scholar 

  • Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7(4):044102

    Article  PubMed  Google Scholar 

  • Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9(10):1304–1311

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y, Dai G, Cui X (2015) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotech Lett 37(11):2349–2355

    Article  CAS  Google Scholar 

  • Gao G, Yonezawa T, Hubbell K, Dai G, Cui X (2015) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Zhang X-F, Hubbell K, Cui X (2017) NR2F2 regulates chondrogenesis of human mesenchymal stem cells in bioprinted cartilage. Biotechnol Bioeng 114(1):208–216

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bissoyi A, Bit A (2018) A review on 3D printable techniques for tissue engineering. BioNanoScience

  • Gurkan UA, El Assal R, Yildiz SE, Sung Y, Trachtenberg AJ, Kuo WP, Demirci U (2014) Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol Pharm 11(7):2151–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gürpinar T, Griffith DP (1996) The prosthetic bladder. World J Urol 14(1):47–52

    Article  PubMed  Google Scholar 

  • Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura T, Shimamura M, Ogawa T, Minagawa T, Nagai T, SilwalGautam S, Ishizuka O (2018) Biofabricated structures reconstruct functional urinary bladders in radiation-injured rat bladders. Tissue En Part A

  • Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kador KE, Grogan SP, Dorthé EW, Venugopalan P, Malek MF, Goldberg JL, D’lima DD (2016) Control of retinal ganglion cell positioning and neurite growth: combining 3D printing with radial electrospun scaffolds. Tissue Eng Part A 22(3–4):286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, Rey S, Catros S, Amédée J, Guillemot F, Fricain J-C (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7(1):1778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King SM, Higgins JW, Nino CR, Smith TR, Paffenroth EH, Fairbairn CE, Docuyanan A, Shah VD, Chen AE, Presnell SC, Nguyen DG (2017) 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front Physiol 8:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 113(12):3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komez A, Baran ET, Erdem U, Hasirci N, Hasirci V (2016) Construction of a patterned hydrogel-fibrous mat bilayer structure to mimic choroid and Bruch’s membrane layers of retina. J Biomed Mater Res Part A 104(9):2166–2177

    Article  CAS  Google Scholar 

  • Kundu J, Shim J-H, Jang J, Kim S-W, Cho D-W (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  CAS  PubMed  Google Scholar 

  • Kuss MA, Harms R, Wu S, Wang Y, Untrauer JB, Carlson MA, Duan B (2017) Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Adv 7(47):29312–29320

    Article  CAS  PubMed  Google Scholar 

  • Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo S-S, Dai G, Karande P (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Kim D-H, Lee JH, Youn Y-N (2018) The effect of pulsatile flow on bMSC-derived endothelial-like cells in a small-sized artificial vessel made by 3-dimensional bioprinting. Stem Cells Int 2018:7823830

    PubMed  PubMed Central  Google Scholar 

  • Lorber B, Hsiao W-K, Hutchings IM, Martin KR (2014) Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication 6(1):015001

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, Feng G-S, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 113(8):2206–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496

    Article  CAS  Google Scholar 

  • Massa S, Sakr MA, Seo J, Bandaru P, Arneri A, Bersini S, Zare-Eelanjegh E, Jalilian E, Cha B-H, Antona S, Enrico A, Gao Y, Hassan S, Acevedo JP, Dokmeci MR, Zhang YS, Khademhosseini A, Shin SR (2017) Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics 11(4):044109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McBeth C, Lauer J, Ottersbach M, Campbell J, Sharon A, Sauer-Budge AF (2017) 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication 9(1):015009

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634

    Article  PubMed  Google Scholar 

  • Mouser VHM, Melchels FPW, Visser J, Dhert WJA, Gawlitta D, Malda J (2016) Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 8(3):035003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M (2017) Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223

    Article  PubMed  Google Scholar 

  • Murphy C, Kolan K, Li W, Semon J, Day D, Leu M (2017) 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for tissue engineering. Int J Bioprint 3(1)

  • Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 11(7):e0158674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterman MC, Mehenti NZ, Bilbao KV, Lee CJ, Leng T, Noolandi J, Bent SF, Blumenkranz MS, Fishman HA (2003) The Artificial Synapse Chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif Organs 27(11):975–985

    Article  CAS  PubMed  Google Scholar 

  • Poldervaart MT, Goversen B, de Ruijter M, Abbadessa A, Melchels FPW, Öner FC, Dhert WJA, Vermonden T, Alblas J (2017) 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE 12(6):e0177628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi P, Edgar TYS, Yeong WY, Laude A (2017) Three-dimensional (3D) bioprinting of retina equivalent for ocular research. Int J Bioprint 3(2):138–146

    Article  CAS  Google Scholar 

  • Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T, Yao S, Liu M, Yang Y, Ji Y, Cui W, Qu Y, Guo X (2018) Composite scaffolds of mineralized natural extracellular matrix on true bone ceramic induce bone regeneration through smad1/5/8 and ERK1/2 pathways. Tissue Eng Part A 24(5–6):502–515

    Article  CAS  PubMed  Google Scholar 

  • Tan EYS, Agarwala S, Yap YL, Tan CSH, Laude A, Yeong WY (2017) Novel method for the fabrication of ultrathin, free-standing and porous polymer membranes for retinal tissue engineering. J Mater Chem B 5(28):5616–5622

    Article  CAS  Google Scholar 

  • Wang X, Tolba E, Schröder HC, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG (2014) Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS ONE 9(11):e112497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Xia Q, Wu Y, Zhang X, Wen F, Chen X, Zhang S, Heng BC, He Y, Ouyang H-W (2015) 3D-printed atsttrin-incorporated alginate/hydroxyapatite scaffold promotes bone defect regeneration with TNF/TNFR signaling involvement. Adv Healthc Mater 4(11):1701–1708

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Moon SJ, Emre AE, Turali ES, Song YS, Hacking SA, Nagatomi J, Demirci U (2010) A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication 2(1):014105

    Article  CAS  PubMed  Google Scholar 

  • Yang T-C, Chuang J-H, Buddhakosai W, Wu W-J, Lee C-J, Chen W-S, Yang Y-P, Li M-C, Peng C-H, Chen S-J (2017) Elongation of axon extension for human iPSC-derived retinal ganglion cells by a nano-imprinted scaffold. Int J Mol Sci 18(9):2013

    Article  PubMed Central  CAS  Google Scholar 

  • Yuan SY, Rigor RR (2010) Structure and function of exchange microvessels - regulation of endothelial barrier function - NCBI Bookshelf

  • Yurie H, Ikeguchi R, Aoyama T, Kaizawa Y, Tajino J, Ito A, Ohta S, Oda H, Takeuchi H, Akieda S, Tsuji M, Nakayama K, Matsuda S (2017) The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE 12(2):e0171448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A, Zhao W (2017) 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater 50:154–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Nguyen PD, Shi S, Burrell JC, Cullen DK, Le AD (2018) 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep 8(1):6634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong C, Xie H-Y, Zhou L, Xu X, Zheng S-S (2016) Human hepatocytes loaded in 3D bioprinting generate mini-liver. Hepatobiliary Pancreat Dis Int 15(5):512–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the National Institute of Technology, Raipur (CG), India, for providing the necessary facilities for this work.

Funding

This study was supported by a grant from the Department of Science and Technology (ECR/2017/001115) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Bit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Bit, A. 3D bioprinting in tissue engineering and regenerative medicine. Cell Tissue Bank 23, 199–212 (2022). https://doi.org/10.1007/s10561-021-09936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-021-09936-6

Keywords

Navigation