Skip to main content
Log in

Bioactive injectables based on calcium phosphates for hard tissues: A recent update

  • Feature Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Self-gelling/setting injectable biomaterials hold great promise for the delivery of bioactive molecules and cells useful for tissue engineering and regenerative medicine. In the biopolymeric regime, a broad compositional spectrum has been developed, yet very limited compositional options have been developed for inorganic injectables. For example, calcium phosphate (CaP)-based injectables are considered to be one of the most promising classes of materials for bone repair and reconstruction. Here we present an update on the recent advancements in CaP-injectables, where significant efforts have been undertaken to improve the regenerative capacity by tailoring the chemical compositions and increasing the drug delivery potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996;(329):300–309.

    PubMed  Google Scholar 

  2. Seiler JG 3rd, Johnson J. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 2000;9:91–97.

    PubMed  Google Scholar 

  3. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005;36 Suppl 3:S20–S27.

    PubMed  Google Scholar 

  4. Dorozhkin SV. Calcium orthophosphates. J Mater Sci 2007;42:1061–1095.

    CAS  Google Scholar 

  5. Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater 2010;6:2863–2873.

    CAS  PubMed  Google Scholar 

  6. dos Santos LA, De Oliveria LC, Rigo EC, Carrodeguas RG, Boschi AO, De Arruda AC. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement. Bone 1999;25(2 Suppl):99S102S.

    Google Scholar 

  7. Sanzana ES, Navarro M, Macule F, Suso S, Planell JA, Ginebra MP. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater 2008;4:1924–1933.

    CAS  PubMed  Google Scholar 

  8. Miño-Fariña N, Muñoz-Guzón F, López-Peña M, Ginebra MP, Del Valle-Fresno S, Ayala D, et al. Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle. Vet J 2009;179:264–272.

    PubMed  Google Scholar 

  9. Perez RA, Altankov G, Jorge-Herrero E, Ginebra MP. Micro-and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications. J Tissue Eng Regen Med 2013;7:353–361.

    CAS  PubMed  Google Scholar 

  10. Habraken WJ, de Jonge LT, Wolke JG, Yubao L, Mikos AG, Jansen JA. Introduction of gelatin microspheres into an injectable calcium phosphate cement. J Biomed Mater Res A 2008;87:643–655.

    CAS  PubMed  Google Scholar 

  11. Li M, Liu X, Liu X, Ge B. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Relat Res 2010;468:1978–1985.

    PubMed Central  PubMed  Google Scholar 

  12. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 2006;113:102–110.

    CAS  PubMed  Google Scholar 

  13. Ruhé PQ, Boerman OC, Russel FG, Spauwen PH, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/ calcium phosphate cement composites in vivo. J Control Release 2005; 106:162–171.

    PubMed  Google Scholar 

  14. Plachokova AS, van den Dolder J, Jansen JA. The bone-regenerative properties of Emdogain adsorbed onto poly(D,L-lactic-coglycolic acid)/ calcium phosphate composites in an ectopic and an orthotopic rat model. J Periodontal Res 2008;43:55–63.

    CAS  PubMed  Google Scholar 

  15. Fei Z, Hu Y, Wu D, Wu H, Lu R, Bai J, et al. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. J Mater Sci Mater Med 2008; 19:1109–1116.

    CAS  PubMed  Google Scholar 

  16. Mather BS. Correlations between strength and other properties of long bones. J Trauma 1967;7:633–638.

    CAS  PubMed  Google Scholar 

  17. Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 1976;58:82–86.

    CAS  PubMed  Google Scholar 

  18. Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 1995;29: 1537–1543.

    CAS  PubMed  Google Scholar 

  19. Martin RI, Brown PW. Mechanical properties of hydroxyapatite formed at physiological temperature. J Mater Sci Mater Med 1995;6:138–143.

    CAS  Google Scholar 

  20. Zhang Y, Xu HH, Takagi S, Chow LC. In-situ hardening hydroxyapatitebased scaffold for bone repair. J Mater Sci Mater Med 2006;17:437–445.

    PubMed  Google Scholar 

  21. Barralet JE, Hofmann M, Grover LM, Gbureck U. High-strength apatitic cement by modification with a-hydroxy acid salts. Adv Mater 2003;15: 2091–2095.

    CAS  Google Scholar 

  22. Hofmann MP, Mohammed AR, Perrie Y, Gbureck U, Barralet JE. Highstrength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomater 2009;5:43–49.

    CAS  PubMed  Google Scholar 

  23. Ginebra MP, Delgado JA, Harr I, Almirall A, Del Valle S, Planell JA. Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J Biomed Mater Res A 2007;80:351–361.

    PubMed  Google Scholar 

  24. Liu C, Shao H, Chen F, Zheng H. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 2003;24:4103–4113.

    CAS  PubMed  Google Scholar 

  25. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J Biomed Mater Res 1995;29:25–32.

    CAS  PubMed  Google Scholar 

  26. Aberg J, Engstrand J, Engqvist H. Influence of particle size on hardening and handling of a premixed calcium phosphate cement. J Mater Sci Mater Med 2013;24:829–835.

    PubMed  Google Scholar 

  27. Zhang JT, Tancret F, Bouler JM. Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution. Mater Sci Eng C 2011;31:740–747.

    CAS  Google Scholar 

  28. Lilley KJ, Gbureck U, Wright AJ, Farrar DF, Barralet JE. Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J Mater Sci Mater Med 2005;16:1185–1190.

    CAS  PubMed  Google Scholar 

  29. Engstrand J, Persson C, Engqvist H. The effect of composition on mechanical properties of brushite cements. J Mech Behav Biomed Mater 2014; 29:81–90.

    CAS  PubMed  Google Scholar 

  30. Vlad MD, Gómez S, Barracó M, López J, Fernández E. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements. J Mater Sci Mater Med 2012;23:2081–2090.

    CAS  PubMed  Google Scholar 

  31. Mariño FT, Torres J, Hamdan M, Rodríguez CR, Cabarcos EL. Advantages of using glycolic acid as a retardant in a brushite forming cement. J Biomed Mater Res B Appl Biomater 2007;83:571–579.

    PubMed  Google Scholar 

  32. Bohner M, Lemaitre J, Ring TA. Effects of sulfate, pyrophosphate and citrate ions on the physicochemical properties of cements made of ß-tricalcium phosphate-phosphoric acid-water mixtures. Am Ceram Soc 1996;79:1427–1434.

    CAS  Google Scholar 

  33. Sarda S, Fernández E, Nilsson M, Balcells M, Planell JA. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res 2002;61:653–659.

    CAS  PubMed  Google Scholar 

  34. Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 2002;23:1091–1101.

    CAS  PubMed  Google Scholar 

  35. Thai VV, Lee BT. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid. J Mater Sci Mater Med 2010;21:1867–1874.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hirayama S, Takagi S, Markovic M, Chow LC. Properties of calcium phosphate cements with different tetracalcium phosphate and dicalcium phosphate anhydrous molar ratios. J Res Natl Inst Stand Technol 2008; 113:311–320.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Chen CK, Ju CP, Lin JH. Setting solution concentration effect on properties of a TTCP/DCPA-derived calcium phosphate cement. J Mater Sci Mater Med 2012;23:2109–2114.

    CAS  PubMed  Google Scholar 

  38. Neira IS, Kolen’ko YV, Kommareddy KP, Manjubala I, Yoshimura M, Guitián F. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies. ACS Appl Mater Interfaces 2010;2: 3276–3284.

    CAS  PubMed  Google Scholar 

  39. Gu T, Shi H, Ye J. Reinforcement of calcium phosphate cement by incorporating with high-strength ß-tricalcium phosphate aggregates. J Biomed Mater Res B Appl Biomater 2012;100:350–359.

    PubMed  Google Scholar 

  40. Schumacher M, Henß A, Rohnke M, Gelinsky M. A novel and easy-toprepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater 2013;9:7536–7544.

    CAS  PubMed  Google Scholar 

  41. Kai D, Li D, Zhu X, Zhang L, Fan H, Zhang X. Addition of sodium hyaluronate and the effect on performance of the injectable calcium phosphate cement. J Mater Sci Mater Med 2009;20:1595–1602.

    CAS  PubMed  Google Scholar 

  42. Bigi A, Cantelli I, Panzavolta S, Rubini K. Alpha-Tricalcium phosphategelatin composite cements. J Appl Biomater Biomech 2004;2:81–87.

    CAS  PubMed  Google Scholar 

  43. Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004;25:2893–2899.

    CAS  PubMed  Google Scholar 

  44. Shie MY, Chen DC, Wang CY, Chiang TY, Ding SJ. Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomater 2008;4: 646–655.

    CAS  PubMed  Google Scholar 

  45. Yu T, Ye J, Gao C, Yu L, Wang Y. Effect of biomedical organic compounds on the setting reaction of calcium phosphates. Colloids Surf B Biointerfaces 2010;75:363–369.

    CAS  PubMed  Google Scholar 

  46. Chiang TY, Ho CC, Chen DCH, Lai MH, Ding SJ. Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements. Mater Chem Phys 2010;120:282–288.

    CAS  Google Scholar 

  47. Fujishiro Y, Takahashi K, Sato T. Preparation and compressive strength of alpha-tricalcium phosphate/gelatin gel composite cement. J Biomed Mater Res 2001;54:525–530.

    CAS  PubMed  Google Scholar 

  48. Tamimi F, Kumarasami B, Doillon C, Gbureck U, Le Nihouannen D,Cabarcos EL, et al. Brushite-collagen composites for bone regeneration. Acta Biomater 2008;4:1315–1321.

    CAS  PubMed  Google Scholar 

  49. Perez RA, Ginebra MP. Injectable collagen/a-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J Mater Sci Mater Med 2013;24:381–393.

    CAS  PubMed  Google Scholar 

  50. Moreau JL, Weir MD, Xu HH. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A 2009;91:605–613.

    PubMed Central  PubMed  Google Scholar 

  51. Wang X, Ma J, Wang Y, He B. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials 2001;22:2247–2255.

    CAS  PubMed  Google Scholar 

  52. Takagi S, Chow LC, Hirayama S, Sugawara A. Premixed calcium-phosphate cement pastes. J Biomed Mater Res B Appl Biomater 2003;67:689–696.

    PubMed  Google Scholar 

  53. Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res 1997;35:273–277.

    CAS  PubMed  Google Scholar 

  54. Burguera EF, Xu HH, Weir MD. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J Biomed Mater Res B Appl Biomater 2006;77:126–134.

    PubMed  Google Scholar 

  55. Qi X, Ye J, Wang Y. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J Biomed Mater Res A 2009;89:980–987.

    PubMed  Google Scholar 

  56. dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda AC. Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif Organs 2003;27:412–418.

    PubMed  Google Scholar 

  57. Khashaba RM, Moussa MM, Mettenburg DJ, Rueggeberg FA, Chutkan NB, Borke JL. Polymeric-calcium phosphate cement composites-material properties: in vitro and in vivo investigations. Int J Biomater 2010;2010. pii: 691452.

    PubMed Central  PubMed  Google Scholar 

  58. Zhou H, Weir MD, Xu HH. Effect of cell seeding density on proliferation and osteodifferentiation of umbilical cord stem cells on calcium phosphate cement-fiber scaffold. Tissue Eng Part A 2011;17:2603–2613.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Li M, Liu X, Liu X, Ge B, Chen K. Creation of macroporous calcium phosphate cements as bone substitutes by using genipin-crosslinked gelatin microspheres. J Mater Sci Mater Med 2009;20:925–934.

    CAS  PubMed  Google Scholar 

  60. Canal C, Ginebra MP. Fibre-reinforced calcium phosphate cements: a review. J Mech Behav Biomed Mater 2011;4:1658–1671.

    CAS  PubMed  Google Scholar 

  61. Xu HH, Quinn JB, Takagi S, Chow LC. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004;25:1029–1037.

    CAS  PubMed  Google Scholar 

  62. Zhang Y, Xu HH. Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. J Biomed Mater Res A 2005;75:832–840.

    PubMed  Google Scholar 

  63. Gorst NJ, Perrie Y, Gbureck U, Hutton AL, Hofmann MP, Grover LM, et al. Effects of fibre reinforcement on the mechanical properties of brushite cement. Acta Biomater 2006;2:95–102.

    CAS  PubMed  Google Scholar 

  64. Burguera EF, Xu HH, Takagi S, Chow LC. High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers. J Biomed Mater Res A 2005;75:966–975.

    PubMed  Google Scholar 

  65. Bao C, Chen W, Weir MD, Thein-Han W, Xu HH. Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells. Acta Biomater 2011;7:4037–4044.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Jyoti MA, Song HY. Initial in vitro biocompatibility of a bone cement composite containing a poly-e-caprolactone microspheres. J Mater Sci Mater Med 2011;22:1333–1342.

    CAS  PubMed  Google Scholar 

  67. Yu L, Li Y, Zhao K, Tang Y, Cheng Z, Chen J, et al. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 2013;8:e62570.

    Google Scholar 

  68. Sadiasa A, Sarkar SK, Franco RA, Min YK, Lee BT. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J Biomater Appl 2014;28:739–756.

    PubMed  Google Scholar 

  69. Hesaraki S, Alizadeh M, Borhan S, Pourbaghi-Masouleh M. Polymerizable nanoparticulate silica-reinforced calcium phosphate bone cement. J Biomed Mater Res B Appl Biomater 2012;100:1627–1635.

    PubMed  Google Scholar 

  70. Grover LM, Knowles JC, Fleming GJ, Barralet JE. In vitro ageing of brushite calcium phosphate cement. Biomaterials 2003;24:4133–4141.

    CAS  PubMed  Google Scholar 

  71. Grover LM, Wright AJ, Gbureck U, Bolarinwa A, Song J, Liu Y, et al. The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials 2013;34:6631–6637.

    CAS  PubMed  Google Scholar 

  72. Cai S, Zhai Y, Xu G, Lu S, Zhou W, Ye X. Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system. J Mater Sci Mater Med 2011;22:2487–2496.

    CAS  PubMed  Google Scholar 

  73. Habraken WJ, Liao HB, Zhang Z, Wolke JG, Grijpma DW, Mikos AG, et al. In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres. Acta Biomater 2010;6:2200–2211.

    CAS  PubMed  Google Scholar 

  74. Kasuya A, Sobajima S, Kinoshita M. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation. J Orthop Res 2012;30:1103–1111.

    CAS  PubMed  Google Scholar 

  75. Link DP, van den Dolder J, van den Beucken JJ, Habraken W, Soede A, Boerman OC, et al. Evaluation of an orthotopically implanted calcium phosphate cement containing gelatin microparticles. J Biomed Mater Res A 2009;90:372–379.

    PubMed  Google Scholar 

  76. Link DP, van den Dolder J, van den Beucken JJ, Wolke JG, Mikos AG, Jansen JA. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-beta 1 loaded gelatin microparticles. Biomaterials 2008;29:675–682.

    CAS  PubMed  Google Scholar 

  77. Lian Q, Li DC, He JK, Wang Z. Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite. Proc Inst Mech Eng H 2008;222:347–353.

    CAS  PubMed  Google Scholar 

  78. Simon CG Jr, Guthrie WF, Wang FW. Cell seeding into calcium phosphate cement. J Biomed Mater Res A 2004;68:628–639.

    PubMed  Google Scholar 

  79. Zhao L, Tang M, Weir MD, Detamore MS, Xu HH. Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold. Tissue Eng Part A 2011;17:969–979.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Félix Lanao RP, Leeuwenburgh SC, Wolke JG, Jansen JA. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater 2011;7:3459–3468.

    PubMed  Google Scholar 

  81. Xu HH, Quinn JB. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 2002; 23:193–202.

    PubMed  Google Scholar 

  82. Link DP, van den Dolder J, Jurgens WJ, Wolke JG, Jansen JA. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Biomaterials 2006;27:4941–4947.

    CAS  PubMed  Google Scholar 

  83. Xu HH, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibers. J Biomed Mater Res 2000;52:107–114.

    CAS  PubMed  Google Scholar 

  84. Dagang G, Haoliang S, Kewei X, Yong H. Long-term variations in mechanical properties and in vivo degradability of CPC/PLGA composite. J Biomed Mater Res B Appl Biomater 2007;82:533–544.

    PubMed  Google Scholar 

  85. Qi X, Ye J, Wang Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Acta Biomater 2008;4:1837–1845.

    CAS  PubMed  Google Scholar 

  86. Habraken WJ, Zhang Z, Wolke JG, Grijpma DW, Mikos AG, Feijen J, et al. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 2008;29:2464–2476.

    CAS  PubMed  Google Scholar 

  87. Bodde EW, Habraken WJ, Mikos AG, Spauwen PH, Jansen JA. Effect of polymer molecular weight on the bone biological activity of biodegradable polymer/calcium phosphate cement composites. Tissue Eng Part A2009;15:3183–3191.

    CAS  Google Scholar 

  88. Félix Lanao RP, Sariibrahimoglu K, Wang H, Wolke JG, Jansen JA, Leeuwenburgh SC. Accelerated calcium phosphate cement degradation due to incorporation of glucono-delta-lactone microparticles. Tissue Eng Part A 2014;20:378–388.

    PubMed  Google Scholar 

  89. Renno AC, van de Watering FC, Nejadnik MR, rovace MC, Zanotto ED, Wolke JG, et al. Incorporation of bioactive glass in calcium phosphate cement: an evaluation. Acta Biomater 2013;9:5728–5739.

    CAS  PubMed  Google Scholar 

  90. Renno AC, Nejadnik MR, van de Watering FC, Crovace MC, Zanotto ED, Hoefnagels JP, et al. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. J Biomed Mater Res A 2013;101:2365–2373.

    CAS  PubMed  Google Scholar 

  91. Oortgiesen DA, Walboomers XF, Bronckers AL, Meijer GJ, Jansen JA. Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J Tissue Eng Regen Med 2014;8:202–209.

    CAS  PubMed  Google Scholar 

  92. Blom EJ, Klein-Nulend J, Wolke JG, van Waas MA, Driessens FC, Burger EH. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics. J Biomed Mater Res 2002;59:265–272.

    CAS  PubMed  Google Scholar 

  93. Ruhé PQ, Kroese-Deutman HC, Wolke JG, Spauwen PH, Jansen JA. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 2004; 25:2123–2132.

    PubMed  Google Scholar 

  94. Blom EJ, Klein-Nulend J, Yin L, van Waas MA, Burger EH. Transforming growth factor-beta1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 2001;12:609–616.

    CAS  PubMed  Google Scholar 

  95. Edwards RB 3rd, Seeherman HJ, Bogdanske JJ, Devitt J, Vanderby R Jr, Markel MD. Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg Am 2004;86–A:1425–1438.

    PubMed  Google Scholar 

  96. Montazerolghaem M, Engqvist H, Karlsson Ott M. Sustained release of simvastatin from premixed injectable calcium phosphate cement. J Biomed Mater Res A 2014;102:340–347.

    PubMed  Google Scholar 

  97. Perez RA, Ginebra MP, Spector M. Cell response to collagen-calcium phosphate cement scaffolds investigated for nonviral gene delivery. J Mater Sci Mater Med 2011;22:887–897.

    CAS  PubMed  Google Scholar 

  98. Seeherman HJ, Bouxsein M, Kim H, Li R, Li XJ, Aiolova M, et al. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. J Bone Joint Surg Am 2004;86–A:1961–1972.

    PubMed  Google Scholar 

  99. Sorensen RG, Wikesjö UM, Kinoshita A, Wozney JM. Periodontal repair in dogs: evaluation of a bioresorbable calcium phosphate cement (Ceredex) as a carrier for rhBMP-2. J Clin Periodontol 2004;31:796–804.

    CAS  PubMed  Google Scholar 

  100. Ohura K, Hamanishi C, Tanaka S, Matsuda N. Healing of segmental bone defects in rats induced by a beta-TCP-MCPM cement combined with rhBMP-2. J Biomed Mater Res 1999;44:168–175.

    CAS  PubMed  Google Scholar 

  101. Park JH, Pérez RA, Jin GZ, Choi SJ, Kim HW, Wall IB. Microcarriers designed for cell culture and tissue engineering of bone. Tissue Eng Part B Rev 2013;19:172–190.

    CAS  PubMed  Google Scholar 

  102. Perez RA, Del Valle S, Altankov G, Ginebra MP. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. J Biomed Mater Res B Appl Biomater 2011;97: 156–166.

    PubMed  Google Scholar 

  103. Perez RA, Altankov G, Jorge-Herrero E, Ginebra MP. Micro-and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications. J Tissue Eng Regen Med 2013;7:353–361.

    CAS  PubMed  Google Scholar 

  104. Niedhart C, Maus U, Miltner O, Gräber HG, Niethard FU, Siebert CH. The effect of basic fibroblast growth factor on bone regeneration when released from a novel in situ setting tricalcium phosphate cement. J Biomed Mater Res A 2004;69:680–685.

    PubMed  Google Scholar 

  105. Maus U, Andereya S, Ohnsorge JA, Gravius S, Siebert CH, Niedhart C. A bFGF/TCP-composite inhibits bone formation in a sheep model. J Biomed Mater Res B Appl Biomater 2008;85:87–92.

    PubMed  Google Scholar 

  106. Bohner M, Lemaître J, Merkle HP, Gander B. Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid). J Pharm Sci 2000;89:1262–1270.

    CAS  PubMed  Google Scholar 

  107. Lode A, Reinstorf A, Bernhardt A, Wolf-Brandstetter C, König U, Gelinsky M. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J Biomed Mater Res A 2008;86:749–759.

    CAS  PubMed  Google Scholar 

  108. Chen CH, Chen CC, Shie MY, Huang CH, Ding SJ. Controlled release of gentamicin from calcium phosphate/alginate bone cement. Mater Sci Eng C 2011;31:334–341.

    Google Scholar 

  109. Habraken WJ, Boerman OC, Wolke JG, Mikos AG, Jansen JA. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. J Biomed Mater Res A 2009;91:614–622.

    CAS  PubMed  Google Scholar 

  110. Girod Fullana S, Ternet H, Freche M, Lacout JL, Rodriguez F. Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement. Acta Biomater 2010;6:2294–2300.

    CAS  PubMed  Google Scholar 

  111. van de Watering FC, Molkenboer-Kuenen JD, Boerman OC, van den Beucken JJ, Jansen JA. Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release 2012;164:283–290.

    PubMed  Google Scholar 

  112. Félix Lanao RP, Bosco R, Leeuwenburgh SC, Kersten-Niessen MJ, Wolke JG, van den Beucken JJ, et al. RANKL delivery from calcium phosphate containing PLGA microspheres. J Biomed Mater Res A 2013;101: 3123–3130.

    PubMed  Google Scholar 

  113. Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials 2006;27:4239–4249.

    CAS  PubMed  Google Scholar 

  114. Reyes R, De la Riva B, Delgado A, Hernández A, Sánchez E, Évora C. Effect of triple growth factor controlled delivery by a brushite-PLGA system on a bone defect. Injury 2012;43:334–342.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, R.A., Shin, SH., Han, CM. et al. Bioactive injectables based on calcium phosphates for hard tissues: A recent update. Tissue Eng Regen Med 12, 143–153 (2015). https://doi.org/10.1007/s13770-015-0096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0096-1

Key Words

Navigation